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ABSTRACT

Searchers frequently encounter the presence of false targets or clutter, which appears indis-
tinguishable from the real target and must be identified in a second stage of the search. False
targets can significantly impede search operations, such as underwater recovery and mine
warfare, when contact investigation is costly. Current literature optimizes these searches by
applying Bayesian updates to the prior distributions for the real and false targets, in what is
called a “semi-adaptive” search. We take full advantage of intermediate search results, along
with soft information about the target, to build up-to-date maximum likelihood estimates
of the location of the real target and the distribution of the clutter. Using these estimates in
place of the priors, we update and improve the allocation of search effort as the operation
progresses. In a detailed simulation study, this new approach increases the probability of
finding the target by up to 12% over the optimal semi-adaptive plan without such estimates.
These gains are robust to variation in the false target density, time to identify false targets,
and total search time available.
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Executive Summary

Many searches for stationary targets are complicated by the presence of other objects that
appear similar to the target during broad-area search. Frequently, a broad-area sensor will
be unable to discriminate between these false targets and the object of the search, requiring
a two-stage process of detection followed by identification of each contact of interest. As
contact investigation can be quite costly, and false targets numerous, it can add significantly
to the difficulty and time requirements of a search operation. In the context of an underwater
search, these false targets may be rocks, sea trash, or other debris that a side-scan sonar
might detect.

Published methods to address this complication optimize searches with false targets by
balancing the application of broad area search with contact identification over a set amount
of broad search time [1], [2]. These methods can learn and adapt from the unsuccessful
application of search effort to better balance broad area search with contact investigation
as the search operation progresses [3]. This is called semi-adaptive search – it recalculates
the optimal allocation of search effort at regular intervals, taking advantage of the search
results up to that point. Semi-adaptive search performs at least as well as non-adaptive
search that does not use such updates, but not necessarily as well as adaptive search that
can anticipate and adapt to information as it is received [2]. However, semi-adaptive search
relies on prior distributions for the real target and false targets that remain fixed over the
course of the search, allocating effort based on failure to locate and identify the target.

In contrast to relying on fixed priors, we propose to use interim search results to build new
estimates of the probability density for the location of the target and the distribution of false
targets over the search region. These estimates require additional prior information about
the spatial distribution of false targets, and how they are related to the real target. In this
study, we assume the target is located in an elliptical region of higher than average intensity
of false targets. We use data-derived estimates of the contact intensity in a modified version
of the existing false-target search construct [1] to optimize the allocation of future search
effort.

We implement these methods numerically to build probability density estimates and optimal

xv



allocations of search effort over a continuous, two-dimensional region representing a search
in progress. This implementation also gives the probability of success over various durations
of search operations, to support decisions prior to and during a search in progress.

We use simulation to study and compare the effectiveness of these searchmethods, modeling
searches for a target within search regions that are randomly populated with false targets.
Our statistic of interest is the fraction of successful searches over a number of randomly
generated regions; we compare the effectiveness of all methods by simulating searches
multiple times. Semi-adaptive searches using estimates of target probability density and
false target intensity have significantly greater probability of success compared to searches
that do not use such estimates, provided assumptions are at least weakly met. Under one set
of conditions in the presence of 15-20 false targets, use of estimates improves the optimal
semi-adaptive search success rate from 68% to 80% of searches, as shown in Figure 1.
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Summary of results of over 10000 simulated searches in randomly generated search
regions. Optimal semi-adaptive search with estimates (OSAP-E) outperforms tra-
ditional semi-adaptive search (OSAP) and non-adaptive search (ONAP).

Figure 1. Probability of Success of Search Plans
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Improvements in the success rate are significant when the prior accurately reflects the ac-
tual process that generated the false targets. Further study can balance how to blend the
prior information with estimates from incomplete data when the prior is a poor approxima-
tion. Implementation under real-world constraints on employment of physical search assets
will involve discrete approximations to the continuous solutions given by these techniques.
These improvements will support operationalization with a field-deployable decision sup-
port system tomake recommendations on search allocation for search operations in progress.
Applications include two-stage searches requiring detection and identification, where there
is a spatial relationship between the actual target and a subset of the false targets. Examples
are high-profile search events such as searches for missing airliners, and mine warfare.
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CHAPTER 1:
Introduction and Background

1.1 Background
The study of how to better conduct search operations is a problem with a long history dating
to the birth of operations research in World War Two. Its history continues with Cold-War
era searches for missing submarines and lost nuclear weapons at sea, later searches for
shipwrecks and lost treasures, and several more recent searches for lost airliners [1]–[4].

Real-world search operations often take place in “noisy” environments that contain more
than just the target. Many undersea searches take place in two stages. In the first stage,
searchers conduct a broad area search using a side-scan sonar to detect low-resolution
contacts that may or may not be the search target. Sonars from ships and Unmanned
Underwater Vehicles (UUV) detect reflected acoustic energy, ideally from the desired target
but also from other underwater objects such as rock formations or uncharted shipwrecks.
These contacts are merely blips on the sonar without enough information to determine what
kind of object generated the return. In the second stage, searchers investigate contacts
detected during the broad area search with a different type of capability, such as a Remotely
Operated Vehicle (ROV) equipped with searchlights and a camera, to investigate whether
each contact is, in fact, the target of the search. If it is not, it was a false target. False
targets may be sea trash, rocks, or other unrelated wreckage. The search problem is made
considerably more difficult by the significant effort required for the ROV to investigate each
contact.

Optimal search theory is concerned with the best way, in some sense, to find a desired target
during a search over a specified region. We consider an optimal search to be the search plan
that provides the greatest probability of success, that is, the highest probability of positively
identifying the target or object being sought within a specified time period. This research
explores a new approach for how to find the best way to search for stationary targets in the
presence of false targets, or clutter.

There are many possible applications of this type of search. We use an airliner lost at sea,
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such as Malaysian Air Flight 370, as a motivating example. A missing airliner could have
belly-landed on the water and be sitting intact at the bottom of the ocean in a way that is
easily identified even by broad-area search, side-scan sonar. Alternatively, it could have
exploded mid-air into pieces no larger than a jet engine, creating a large debris field that may
be difficult to distinguish from the background clutter present everywhere on the sea floor.
Other contexts include hunting mines in the presence of underwater clutter. The broader
approach detailed in this research – of learning from false targets as they are observed, to
improve future allocations of search effort – may also be applicable in different kinds of
searches, such as finding smugglers intermixed with innocuous maritime traffic.

1.2 Scope
This study develops a method for conducting searches to locate and identify stationary
targets in the presence of clutter, or false targets. False targets are initial broad-area search
results that appear indistinguishable from the actual target, but are not actually the target.
It may require significant additional effort to discriminate a false target from a real target;
this can greatly increase the amount of time and effort required to successfully prosecute a
search. The searcher must decide how to allocate limited search resources between broad
area search, and investigation and classification of previously located contacts. We assume
that our broad-area sensor cannot distinguish between real and false targets - even in gross
measures such as size. Thus every Contact of Interest (COI) is equivalent. This is a
conservative assumption that also simplifies our ability to calculate and simulate search
plans.

We study the continuous case where any continuous application of broad area and contact
investigation effort over the search region is feasible. This is not necessarily realistic; search
plans in practice must account for the reality of the assets in use such as ships and UUVs.
Optimal continuous search allocations tend to spread search effort thinly over a large area.
This is either inefficient or impossible with actual search assets, which follow paths in the
real world, and cannot simply spread incremental search effort over a broad area as our
model assumes. We optimize in the continuous case, to be able then to make the best
possible discrete approximations if needed, given the constraints of a particular search. For
further discussion of this issue and recommendations, see [5] and Chapter 7 of [6].
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We do not consider all sources of uncertainty. The searcher does not know how clearly
targets will appear to sensors. Sensor performance can be affected by any number of
environmental factors, such as water conditions and sea bottom type, as well as the age
and condition of the targets themselves, so the detection rates and probabilities are also
uncertain. We do not attempt to model or predict sensor performance; instead we assume
that the search functions – which relate the search effort expended to the probability of
detecting, or identifying, targets – are well known. This allows us to focus on the uncertainty
in the location of the real target and the distribution of false targets.

To do so, we need to have sufficient soft information to make several assumptions about
the search, the probability distribution of the target, the distribution of false targets, and
how they are related. In our motivating search for a missing airplane, for example, the
searcher’s objective is to recover the cockpit flight recorder or “black box”. In this case, we
can imagine a large number of false targets of two types: the true sea-bottom clutter, such
as rocks, reefs, and trash; but also the other pieces of the crashed jetliner itself. Searchers
want to find the section of the fuselage containing the black box, not to spend time on the
tail, wings, engines or other assemblies that may have separated when the plane impacted
the water. Even though these are pieces of the wreckage, for the searcher who needs the
black box, they are these false targets. Therefore, we consider a search with both unrelated
and related false targets.

We expect, over the given search region, that the intensity of unrelated false targets is
uniform. We model this with a homogeneous Poisson process. Further, we assume both
the debris field of related false targets, and the black box, are to be found around the
central location of the crash site. Thus we expect that the probability density of the target
is proportional to the intensity of the related false targets, such that it scales to a total
probability of 1.0. This method is appropriate in the general case for different models of
the target intensity. Here, we expect the prior densities for the debris to have a roughly
elliptical pattern, based on position errors in the last known location prior to the crash.

1.2.1 Study Objectives
In this study, our first goal is to optimize a search in progress to maximize the likelihood
of finding the target over a finite series of discrete sorties, using all information available.

3



We want to extract as much information as possible from completed sorties, by fusing false
target detections with soft information and context to improve our probability estimates for
the target location and for the false contact density. We use these updated estimates to decide
how best to continue prosecuting the search, using the capabilities and time available. Given
a set of initial conditions and context, we demonstrate the ability to estimate the probability
for success of a proposed search. This will aid in planning search operations before they
begin. An alternate measure of effectiveness is the smallest mean time to positive detection;
we do not consider this directly, but provide the means for planners to estimate time
requirements. Finally, we build simulation tools to study effectiveness of several methods
for allocating search effort, in terms of mean probability of success for a search of a given
length. We explore the effects of varying factors such as sensor capabilities, time available,
and false target density. This provides an understanding of what factors have the greatest
impact on search success, and what we can do to improve outcomes under various sets of
conditions.

1.3 Literature Review
Optimal search theory for stationary targets was first developed by Bernard Koopman and
others to support the Navy in World War Two; see [7]. The standard work in the field is [6].
The most recently published monograph is [8]; we adapt its presentation of the problem in
this section and include it in Appendix B.

1.3.1 Optimal Search
The algorithm for optimal search allocation in the case of continuous space, continuous
allocation effort uses as inputs the search region R, a detection function giving the capability
of the sensor used, the cost (or time) to apply search effort, a prior distribution for the location
of the target, and the total cost, in terms of effort or time, available to complete the search
K . It then calculates a Lagrangian multiplier, which represents the optimal “rate of return”
of search effort in terms of probability of success. Using this Lagrangian multiplier, the
algorithm can then return the optimal allocation of search effort over the given region. It is
possible to find the optimal value of the Lagrangian multiplier by a one-dimensional linear
search, although this involves a number of inverse function evaluations and an integral over
R, and is not trivial to calculate. The search plan returned is a function f (x) over space R

4



returning the optimal value of effort to apply. The integral ∫
S

f (x) dx then sums to K . Note

that this formulation assumes an input probability distribution function for the target that
does not change over time.

See Figure 1.1 for an example of an optimal search allocation given a bivariate normal
probability distribution for the target. The optimal search proceeds by steadily expanding
the area of search, in order to search the area of maximum probability first.

1.3.2 False Targets
In the presence of false targets, a search plan consists of both an allocation of broad area
search effort, and a contact investigation policy to deal with any contact detected in the
broad search.

There is no recently published work with an equivalent method for optimizing searches with
false targets. In Chapter 4 we summarize the methodology for optimal false target search
provided in [6], [9], [10] and outline the modifications we have made for this study. We use
the formulations from [9], [10] extensively, using them as a starting point for our model.

Some researchers study contacts that may be ghost returns that are not real objects, but
rather spurious returns or noise generated by the sensor. We do not consider these types of
false targets here; see [11], [12].

Kalbaugh discusses the immediate and final classification of contacts as either targets or
false targets [13]. Kalbaugh considers a searcher that is able to discriminate a false from
a real target with a certain probability, without the requirement for a two-stage search of
detection and classification. The structure of the problem reflects possible application to a
missile seeker that must decide between a target to destroy, and a decoy to bypass in search
of a more promising target.

Conolly and Pierce write on the intersection between information theory and search [14].
In a search, information theory proposes that the best allocation of search resources is that
which makes the most use of available information, and most rapidly learns information
about the region. They study one and two-cell systems and assume there is no cost of
contact investigation.
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Figure 1.1. Example of Optimal Search

Kress, Lin, and Szechtman consider not false targets, but false positives, in the context of
locating a hostage whose location must be verified before he or she can be rescued [15].
They consider detections made by a surveillance system that must then be verified in a
second search stage (or rescue team), which could be costly. They develop a greedy rule
in their Theorem 3.1 to select the discrete search cell with the highest payoff in terms of
probability of target detection, to cost in terms of expended effort on false targets. This is
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similar to the ratio r used in [10] and as Equation (1) in [16] to maximize the multiplier
(and dual variable) k, which gives the probability rate of return for continuous search effort
applied.

Dobbie, in [17], continues the work of [9], [10] on false target search. He describes some
properties of searches and summarizes the difficulties of real-world searches with false
targets, discussing false target detections as contingencies.

1.3.3 Adaptive and Semi-adaptive Plans
Stone divides false target search plans into three classes: adaptive, non-adaptive, and semi-
adaptive: Adaptive search plans are those that use - on a continuous basis - all information
generated in the search to optimize the mean time to finding the target [6], [16]. Non-
adaptive plans do not use information gathered during the search. Semi-adaptive plans
execute a non-adaptively planned search, update with all available information at a discrete
number of time intervals, and then re-embark on a new non-adaptive plan generated using
that information until the next update time.

Dobbie solves a simple adaptive search plan [17]. It includes two discrete locations or boxes,
and a single false target. Dobbie constructs a Optimal Adaptive Plan (OAP) with several
contingencies and cut-off times to optimally allocate broad search and contact investigation
effort. No other adaptive search plan is solved in the literature to date.

Stone reports on a simulation study including a solved Optimal Semi-Adaptive Plan (OSAP)
[16]. He provides a method for constructing semi-adaptive search plans, which we follow.

1.3.4 Past Findings
Stone et al. in [10] provide the means to optimize a search in the presence of false targets.
However, the search plans so built do not have flexibility to adapt. They take as fixed the
real target distribution and false target intensity.

Stone et al. in [6], [9], [10] show the optimality of a contact investigation policy that is
“immediate and conclusive” when false targets are Poisson distributed and investigations
are uninterrupted, but possibly delayed. This means that any contact that is found in the
course of broad area search is immediately investigated until it is identified. This further
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implies that the Optimal Non-Adaptive Plan (ONAP) is the same as the OSAP, under their
assumptions. As specified in [10], this results applies when the contact identification for
the real target takes an equal or greater time than contact identification (ID) for false targets.
If the real target may be identified more quickly and interrupted contact investigation is
allowed, then there are diminishing returns to continued contact identification effort. In
this case, broad search effort and contact identification effort are split between the two to
maximize returns across both. This is what we consider in Chapter 4.

Stone in [6] shows that if µa, µs, µn are the mean times to target identification for the OAP,
OSAP, and ONAP, that under a finite sequence of update times,

µa ≤ µs ≤ µn. (1.1)

Stone in [16] provides several interesting results from the simulation comparing ONAP and
OSAP plans with Immediate and Conclusive Contact Identification (ICCI). It shows that
the OSAP can have up to 30% improved mean time to identify the target over the ONAP.
This advantage is strongest when there are few false targets, and the cost in terms of search
effort of investigating targets is high. Additionally, it shows that a non-uniform PDF for the
target – where its probability was clustered in a few cells rather than spread evenly over the
search region – tended to reduce the advantage of the OSAP.

1.4 Overview
We extend the work described in Section 1.3 by:

• Updating estimates of the prior real target distribution based on both prior knowledge
and information obtained during the search, rather than solely updating real target
distribution in a Bayesian manner based on lack of success for the search already
conducted

• Considering total search time for planning purposes, not just broad search time
• Modeling divided effort between contact investigation and broad search, not solely
ICCI

• Implementing and simulatingmultipleONAP andOSAP search plans over continuous
2-dimensional space
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Usually, searches without false targets only need to maintain a distribution function for the
target, that is updated as the search progresses. With false targets, we also need to track a
distribution for the false targets as well. Current methods update these distributions in a
Bayesian manner based on the lack of success implicit in a continued search, as in Figure
1.2. In contrast, we assume prior information is available about the target and the search
region. This allows us to build a model for the location of the real target that we can update
with data on false targets. We use this model to make improved estimates of the real and
false target distributions as we obtain more information from our searches. That is, we do
not just update the posterior distributions, we actually update the priors as well using this
additional information, as outlined in Figure 1.3 with the additional red lines.

In order to apply the methods of search theory, we first need estimates of the probability
distributions. We start in Chapter 2 by developing an approach to updating the probability
distributions for the location of real targets, and for the density of false targets. We use broad-
area search results and classification results from identification of contacts, but this could
potentially include external updates to the probability distributions gained from outside
sources.

In Chapter 3, we develop a way to use these estimates of the false target distribution to
improve the distributions used in the search optimization methods developed by Stone et al.

In Chapter 4, we extend the false target search optimization procedures in [10]. We use
our estimated probability distributions to find the optimal allocation of effort over the next
time increment that maximizes the probability of success in the expected total search time
available. This allows us to investigate some initial features of searches with false targets.
We then add to the optimization model by relaxing assumptions to make it more realistic
and applicable in practice, considering a broader range of detection functions.

We test the model in simulations of search operations in Chapter 5. We conduct simulation
experiments to investigate the effect that key input factors have on the overall search results,
showing the potential advantage in probability of success by using the estimation methods
developed here. This method compares favorably to existing procedures across a range of
search conditions.

9



Prior 
Information

Optimal Semi-Adaptive Search
(1975)

Prior:
    Real Target Density
    False Target Intensity

Do a Search

Allocate Effort

Get data back (COIs 
& IDs)

Build Next Allocation of 
Search Effort

Posterior:
    Real Target Density
    False Target Intensity

Update real target 
density given search 
effort unsuccessfully 

applied

Update expected # of 
undetected false targets 

(unless Poisson)

Previously published methods for false target search relied on strongly held prior
beliefs about the distributions of false and real targets and only updated those
probabilities based on the failure of past search efforts implicit in a continued
search. Adapted from [6], [16].

Figure 1.2. False Target Search Optimization
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Optimal Semi-Adaptive Search with Estimated Densities
(2017)

Prior 
Information

Current Estimate:
    Real Target Density
    False Target Intensity

Do a Search

Allocate Effort

Get data back (COIs 
& IDs)

Build Next Allocation of 
Search Effort

Posterior:
    Real Target Density
    False Target Intensity

Update real target 
density given search 
effort unsuccessfully 

applied

Update expected # of 
undetected false targets

Assume a model

Estimate density 
& intensity based 
on model & data

In this work we use the data to improve our estimates of where the real and false
targets are distributed to improve our decisions allocating search effort. We have
prior information about the real and false targets that allows us to assume a model
and use data from the search to improve these prior estimates. Differences are
highlighted in red.

Figure 1.3. False Target Search Optimization with Estimates

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



CHAPTER 2:
False Target Density Estimation

2.1 Background and Overview
At a given time in the middle of a search operation, we will have detected a number of sonar
contacts. We can use these contacts as a point pattern to estimate the source distribution
for the false targets. We then use that source distribution to better inform our search for the
real target, when we optimize our allocation of search effort.

2.2 Model
We use a Non-Homogeneous Poisson Process (NHPP) as the source distribution for false
targets in our search region. In a NHPP, points are located over space according to an
underlying intensity function. This intensity – which can vary over space – gives the
expected number of points (here, targets) to be found in a given area.

A NHPP is flexible enough to be used to model the source distribution of false targets for
a variety of search regions. An elliptical feature may describe the likely debris pattern for
a plane crash, but other types of models are possible. For instance, a conic pattern could
spread from a known point along an approximately known azimuth; or a more linear pattern
of returns could be present if we were looking for a linear feature; or boxes and even grid
patterns from regularly spaced mines in a field. We consider our model to be the form of
the intensity function λ(x), how it varies over space, and its parameters.

Note that many other models – for example, a kernel density estimate – can be used
to estimate the intensity function for a given set of points in R, some providing greater
computational efficiency. The use of a parameterized model such as this one allows us to
do two things. First, it allows us to specify bounds and conditions on the parameters of the
model in accordance with any soft information we have prior to the search. This helps us to
use all available information to get the best estimate of the location of the targets. Second,
we build the structure of our model in a way that we can extract key information from the
estimated parameters that will be useful in locating the real target. By taking the false target
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intensity in conjunction with additional soft information, we can refine our prior probability
distribution for the real target.

In this study, we use an unimodal, elliptical peak of intensity added to a constant term for
our model. We refer to the elliptical intensity as the “feature,” and the constant level the
“background.” We consider the background intensity to represent the ocean-floor debris,
rocks and other hard objects that are present and spread randomly anywhere in the ocean.
We consider the elliptical feature to be debris from the wreckage of the plane, that is
concentrated in a single location. This debris – part of the feature – helps lead us to the
target.

In order to estimate the parameters of our model, we use the method of maximum likelihood
estimation. This is a solidly grounded method that works well when computationally
tractable, as it is in our case [18].

We make the following assumptions in this chapter:

1. Assume points are false targets generated by a NHPP. False targets are distributed
according to the location-dependent intensity λ(x) with no interaction between points.

2. Assume the NHPP is the sum of two underlying processes:
(a) A constant background Homogeneous Poisson Process (HPP)
(b) A single cluster or ‘feature’ (NHPP) that we have parameterized

3. Assume this feature has some shape, orientation, and/or other properties, such as the
elliptical feature we consider here.

4. There is a defined region of interest R.
5. Since we assume there is only one real target, we treat all contacts as false targets.

Once a contact is identified as the real target, the search is over.

2.3 Formulation
The maximum likelihood estimator is simply a set of parameters θ for our model that, of
all possible parameters for our model, maximize the likelihood of having generated the
data that we have observed. To find the Maximum Likelihood Estimate (MLE), we first
must state the likelihood function, or, in this case, the log-likelihood function. We use
the log-likelihood L for a NHPP over continuous space as a function of the intensity λ,

14



from [18] Section 8.2. First we define:

R Region of space

λ(x) Estimated intensity of contacts at point x ∈ R

ν Number of contacts observed

i ∈ I Set of collected observations or contacts(I = {1, ..., ν})

xi Locations of the ith observation (contact) .

We can then write the log-likelihood as a function of λ,

L(λ) =
ν∑

i=1
log λ(xi) −

∫
R

λ(x)dx, (2.1)

where ∫
R
λ(x)dx is the expected number of points (or contacts) from theNHPPwith intensity

λ(x) in region R [18].

An alternative formulation would be to maximize entropy. We use maximum likelihood as
it is in broader use in spatial statistics, and we are using probabilistic rather than information
based methods to optimize our search.

We use a parametric model for λ giving our elliptical feature as follows.

Sets:
i ∈ I : Set of sonar contacts from search results (I = {1, ..., ν})

Data:
xi : Location of sonar contact i observed at point x ∈ R
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Variables:

α : Angle or azimuth of major axis of ellipse

β : Exponent giving how steeply the feature drops off to zero

ρ : Background density of false targets (constant)

C : Location of center of feature C = *.
,

C1

C2

+/
-

D : Density parameter or height of the cluster

η1 : Major axis of ellipse: length of feature

η2 : Minor axis of ellipse: width of feature

θ : Single variable containing key parameters describing the intensity

θ = (C1,C2, η1, η2, α, ρ, D, β)T

L : Log-likelihood

λ(x) : intensity of contacts at x = *.
,

x1

x2

+/
-
, s.t. E[contacts in R] =

∫
A

λ(x)dx

ξ (x) : calculated exponent to simplify equations

Formulation:

max
α,ρ,C,D,η1,η2, β

L(λ) =
ν∑

i=1
log λ(xi) −

∫
A

λ(x)dx (2.2)

s.t.

ξ (x) =
(

(x1 − C1) cos α + (x2 − C2) sin α
η1

)2β
+(

(x1 − C1) sin α − (x2 − C2) cos α
η2

)2β
(2.3)

λ(x) = ρ + De−ξ (x) (2.4)

ρ ≥ 0 (2.5)

(C1,C2) ∈ R (2.6)
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η1, η1 ≥ 0 (2.7)

D ≥ 0 (2.8)

α ∈ [0, π) (2.9)

β ∈ Z+ (2.10)

The objective function (2.2) maximizes the log-likelihood that this is the density distribution
of points over the region, given the observed points xi. Constraint (2.3) gives the exponent
ξ as a function of x for the feature in the search space, with an exponential fall-off with
increasing distance from the feature. Constraint (2.4) gives the actual contact intensity as
function of x, by adding a constant background clutter density ρ to the intensity resulting
from the feature at any given point. Constraint (2.5) ensures a positive background process
intensity. Constraint (2.6) restricts the coordinates of the center of the feature to the bounds
of the search region R. Constraints (2.7) ensure positive dimensions for each feature.
Constraint (2.8) ensures the intensity is non-negative everywhere, although we could allow
negative features in the general case. Constraint (2.9) sets the bounds on the azimuth of
the ellipse, demonstrating how this formulation allows us to use prior soft information to
improve our estimates. Finally, constraint (2.10) defines our drop-off exponent as an integer.

The center of each feature is at (C1,C2)T . We use the angle α to enable rotation of features.
α could represent the direction of travel of an airplane when it crashed.

We use β as a factor in the exponent to modulate the rate of fall-off for the feature’s intensity.
In general a β > 1 causes the intensity to fall off more sharply beyond η1 and η2.

If we have prior information on, for example, flight path, we can specify the azimuth at
which we expect the ellipse to lie. We can specify an estimate azimuth α̂ and a width of the
allowed interval αw . We use these to create bounds in (2.9) to constrain the angle α to the
specified interval [α − αw, α + αw].

This is a non-convex problem in our decision variables; the division by the feature size
parameters η ensure it is not convex, even if all other variables were fixed. As such, global
optimality is difficult to prove; we discuss implications in Section 2.5.

More generally, we could use a similar model for features of a variety of different shapes.
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These can support circles, ellipses, and rectangles or lines. We could allow in the general
case a number of features J > 1 in linear combination over space. In practice J should be
small, generally 1 or 2, given the number of parameters required to optimize. We could use
a bivariate normal function as well, which has a similar number of degrees of freedom, but
its parameters do not support use of prior soft information as naturally.

We demonstrate the ability of this formulation to estimate the intensity model in Figure 2.1.
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We can see COIs plotted in R, where we assume a homogeneous application of
search effort. The purple ellipse represents the MLE feature with C1,C2, η1, η2 as
in the subtitle, here with background level of clutter ρ = 0.06.

Figure 2.1. Example of Contact Intensity Estimate Given Contact of Interest
Locations
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2.4 Comparison with Homogeneous Process
We can compare a non-homogeneous intensity to a homogeneous intensity and see if the
MLE feature found by the optimization is backed up by the data. In effect, we are testing
the null hypothesis that the intensity is homogeneous, against the alternative hypothesis that
there is a feature parameterized as described in Section 2.3.

We can use spatial statistics and functions to calculate a p-value for whether a point pattern
is completely spatially random, for example, the J-test or spatial scan test [18]. These
require some modification if our application of search effort is not uniform over the region.
However, since we are calculating the likelihood based on our model’s parameterization, it
is straightforward to also calculate the likelihood based on a homogeneous intensity λ(x)
as well, by modifying (2.4) to λ(x) = ρ with no spatial dependence. Then we can set up a
likelihood ratio test using Wilk’s Theorem as a rough approximation:

∆ = 2(La − L0) ∼ χ2
n, (2.11)

where La and L0 are the alternative and null hypothesis log-likelihoods, and n is their
difference in degrees of freedom. Our elliptical model estimates seven parameters, to a
single parameter in the HPP, so n = 6. Thus, a difference in L of 6 gives us a p-value
of χ2

6(12) = 0.06, supporting the alternative hypothesis that the model for λ including a
feature is the better fit.

To test overfitting, we can generate spatially random data and evaluate the intensity of the
features detected by the model. This model has seven degrees of freedom describing the
ellipse and the background noise. Therefore, we expect that it will have a better fit – and
higher log-likelihood – for a set of data than a Completely Spatially Random (CSR) model,
which only has a single degree of freedom for the constant level of background noise. We
can see in Figure 2.2 that the model does return higher estimated log-likelihood values.
The Lest are close to the L value given by the CSR data, giving us confidence the model is
not creating strong, phantom features out of random noise. We see that 77% of models so
generated as CSR have (La − L0) < 6; this gives our test for CSR an estimated statistical
power of 0.77.
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77% of models have difference < 6

Our intensity estimation model will detect a feature in CSR data but it does not
depart far from the HPP that generated the data. The log-likelihood of the model
Lest closely tracks the CSR log-likelihood LCSR, shown by the blue dotted line,
over 500 randomly generated search states with constant intensity between 0.01
and 0.30 (1 to 30 false targets in R). Note that LCSR depends on the integer
number of data points.

Figure 2.2. Log-likelihood of Feature Detection for Completely Spatially
Random Data

2.5 Implementation
We implement this model in General Algebraic Modeling System (GAMS) Version 24.9
with an interface to R via R-Studio and the package gdxrrw [19]. We use the CONOPT
nonlinear solver to optimize the MLE with close attention to the bounds and initial values
for key variables as outlined in Table 2.1. Note that our search region R is defined by
R = {(x1, x2) |x1 ∈ [−5, 5], x2 ∈ [−5, 5]}.
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Table 2.1. Bounds on Variables

Parameter Lower Bound Upper Bound Initial Value
C1 -5 5 x̄1

C2 -5 5 x̄2

η1 0.25 2.5 σ(x1)

η2 0.25 2.5 σ(x2)

α 0.0 π π/2

We bound all decision variables above and below for the solver. We also provide
reasonable initial values to get us close to a likely solution.

As this is a non-convex optimization problem, we also apply multiple random restarts to
improve our results. We can compare the improvement using up to n restarts to our first
effort with no randomly initialized solves. Figure 2.3 shows this data and justifies our
decision to run a single solve for the model in the interest of computational efficiency.
Implementations using multiple restarts may be able to gain marginal improvements in
efficiency, but at considerable computational expense.

2.6 Results
We simulate data in some basic cases to generate estimates for comparison with the known
source distribution. We can then evaluate its ability to accurately and consistently detect a
feature within data.

2.6.1 Accuracy
We show that this estimation method can successfully detect features in data consistent
with the model. We use as a source distribution xi ∈ X ∼ Pois(λ(x, θSRC)), where
θSRC = (C1 = 2.0,C2 = −2.0, η1 = 2.5, η2 = 1.25, ρ = 0.1, D = 3.5, A = 1.0, β = 1.0).
This source distribution is plotted in Figure 2.4 along with ten estimates.
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This plot shows the improvement (or “gap”) in log-likelihood resulting from running
10 random restarts in addition to the initial model solve. This shows that restarts
are not needed to produce good results in terms of log-likelihood from estimation,
so we can solve this problem once and accept that initial solution.

Figure 2.3. Effect of Restarts on Likelihood of Intensity Estimation
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(b) Ten Samples and Intensity Estimates θ̂SRC

These plots show the intensity of the NHPP used to generate search regions in this
chapter, following the elliptical model of Section 2.3. The purple ellipse represents
θSRC. The second plot shows ten samples drawn from this distribution and overlaid,
along with the ten MLE ellipses representing the estimated parameters θ̂.

Figure 2.4. Source Distribution with Samples
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We can see that there may be some bias in our estimator for some of the parameters; in
particular it has difficulty capturing the correct dimensions of the ellipse η1 and η2, and
the rotation angle of the ellipse A. These are not independent biases but result from the
structure of our intensity function and θSRC. However, the location of the feature is quite
accurate C = (C1,C2)T , as plotted in Figure 2.5 over 1000 samples.
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(b) C2 Location

The MLE estimation method is quite accurate at estimating the location of feature
from θSRC within the region R. These histograms represent estimates of the
location parameters C1 and C2 from 1000 contact data samples drawn from θSRC.

Figure 2.5. Accuracy of Feature Location

2.6.2 Consistency: Bootstrap
We can use the bootstrap to estimate the variance of these parameter estimates. To do so,
we generate bootstrap samples of the contacts detected in R, and run our MLE optimization
on each bootstrapped sample. The results of a number nBoot of bootstrap samples allow
us to estimate the variance of our estimated parameters. This is computationally intensive.

There is some discussion of use of the bootstrap in estimating the intensity of a non-
homogeneous spatial process. One paper [20] evaluates bootstrapping a spatial Poisson

23



process to determine statistics describing the point process. Section 2 of [20] discusses
a traditional bootstrap of the data points observed. One drawback pointed out is that the
resulting bootstrap samples - n points sampled with replacement from the n observed data
points - will have some points repeated multiple times, which is not the case in the original
data and could lead to differences in behavior of the estimator. Evaluation of these methods
shows that these drawbacks are minimal, and the bootstrap can give quite accurate intervals
with as few as 50 samples. See Appendix A for details on finding confidence intervals for
the estimated parameters of a spatial Poisson process. From there, we can see that a rough
bound given by the Modified Wald Interval the order of

100(1 − α)%CI for λ(x) =
[
λ̂(x) − Zα/2

√
λ̂(x), λ̂(x) + Zα/2

√
λ̂(x)

]
(2.12)

is acceptable, where Zα/2 is the appropriate normal critical value. Taking the computational
time to perform the bootstrap significantly tightens this bound over R away from the feature
where λ is near zero.
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CHAPTER 3:
Estimated Posterior Probability Distributions

3.1 Background and Overview
In Chapter 2 we discussed our method to estimate the intensity of a NHPP. In this chapter,
we discuss how we apply additional soft information to these estimates to improve our prior
probability distributions for the real and false targets. We first extend the formulation of
Section 2.3 to account for the fact that the search region R has not been uniformly searched,
and then develop the tools to build better estimates of the target densities.

3.1.1 Overview
In a search with no false targets, it is straightforward to find the PDF for the target’s
location. Starting with the prior, searchers use Bayes’ Theorem to reduce the probability
density proportional to the search function of effort applied. In a search with false targets,
we have the opportunity to consider more information.

At any point in the search, we have three types of information and data available to us. First,
there are the priors, including the probability distribution for the real target and the Poisson
intensity for false targets. Second, there is the search progress, of broad area search effort
that has been applied over R. Third, we have the search results, including both the false
targets found and identified, as well as COIs that have been found, investigated with some
amount of contact identification effort, but not yet identified.

We calculate a COI intensity function as an intermediate step. With this, we separate a COI
intensity into target density and false target intensity by making assumptions that enable us
to separate the two in certain cases with real-world application. This allows us to use all
available information to output the updated target location probability, both over the search
region R and for each unidentified COI, and the updated intensity of false targets that have
not yet been detected.
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3.2 Assumptions
We make the following assumptions, extending and adding to those made in Section 2.2:

1. Assume a background level of false target clutter represented by a HPP. This means
the sea trash is randomly and evenly distributed, and the region R is not so large that
the density of the background clutter varies. These are the unrelated false targets.

2. Assume the event that created the target also created false targets represented by an
NHPP. These are the related false targets. The NHPP has a region of higher intensity,
or feature, that has some shape, orientation, and other properties. Here we assume
the feature is elliptical.

3. Assume the distribution of the real target is the intensity of the NHPP divided by its
integral over R, i.e. scaled to 1.0. This is not required in all cases to use this method.

4. Assume COIs cannot be distinguished by the broad search sensor. That is, we do not
have any information whether a COI is a target or false target until we investigate it.
Further, we do not discriminate whether a false target is “related” or “unrelated” to
the target even after we have investigated it. This is a simplifying assumption that
may not always hold in practice.

We also assume we have the following additional prior information:

1. Search region R. This is the area over which the search takes place. We assume
R contains almost all of the PDF for the target’s location (> 99%). It is related to
but not entirely determined by the prior target distribution. We assume the target
is somewhere within the search region, or that the search region can be expanded if
needed.

2. Prior target distribution f (x). This is derived from whatever information we have
about the target already. For example, there could be satellite data from when
the missing airliner reported its location via a Global Positioning System (GPS)
transponder. This is the distribution for the probability the target is located at any
given point x in R.

3. Prior false target distribution δ(x). This may be an informed estimate based on past
operations in this area, or a best guess.

4. Search functions b(x, z), B(x, z), a(x, w), A(x, w). These are the search functions
giving the probability of success for any given application of search effort applied -
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assuming there is such a target there. We assume detection events are independent.
• b(x, z): Real target broad search detection function given broad search effort z

applied at x
• B(x, z): False target broad search detection function given broad search effort

z applied at x
• a(x, w): Real target contact ID function given contact ID effort w applied at x
• A(x, w): False target contact ID function given contact ID effort w applied at x
• U: Broad search effort application rate (per time)
• Λ: Contact ID effort application rate (per time)

3.3 Non-Uniform Broad Search Effort
The formulation in Equation (2.2) estimates an intensity uniformly over the entire region.
However, in an actual search, we will not have applied broad search effort uniformly over
the region. There may be part of the region where we apply very little effort, and have a
low probability of detecting any COIs present; and other locations where we have applied a
large amount of effort and are almost certain to have detected any COIs there. This means
that not all COIs are equally probable, so they should have different contributions to the
estimated intensity. A COI found in a location with a low probability of detection based
on applied broad search effort should count for more intensity in the estimate than a COI
detected in a region of high detection probability.

We deal with this in the following way. We consider the searcher to be not just detecting
contacts, but also observing intensity. The observed intensity λobs(x) at any point x is then
the product of the actual intensity λact(x) and the probability of detection at x given the
amount of effort the searcher has applied there w (x). Thus,

λobs = λactB(x, z(x)). (3.1)

We use B(x, w (x)) rather than b(), because we are considering all of our COIs to be false
targets as discussed in 3.4.

To avoid confusing the actual and observed intensities, we need to be clear about which λ
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we are estimating in our MLE formulation 2.3. There, we are maximizing the likelihood of
the data and contacts we actually observed, L(λobs) – but we want our result in terms of the
actual intensity λact. We then have:

L(λobs) =
ν∑

i=1
log λobs(xi) −

∫
R

λobs(x) dx (3.2)

L(λobs) =
ν∑

i=1
log

(
λact(xi)B(xi, z(xi))

)
−

∫
R

λact(x)B(x, z(x)) dx (3.3)

λact(x) = ρ + De−ξ (x). (3.4)

We can use (3.3) to replace (2.2) in this case with non-uniform application of effort. (3.4)
clarifies that our parameters θ refer to the actual intensity λact as desired.

If broad search was evenly applied over R there should be no difference, but COIs xi where
little broad search effort z(x) was applied, will "count" more. In the second term, there is
a reduced penalty for parts of R that have had very little search effort applied and thus have
low B. We demonstrate an example of how this works in Figure 3.1.

When calculating the intensity for non-uniform application of search effort as in Section
3.3, we use a floor value of B(x, z) of 0.05. This is necessary to ensure there is a
counterweight term in the MLE objective pulling the intensity down; this does not represent
actual probability of detection, but our preference to penalize unjustified estimates of high
intensity in areas we have not searched yet.

3.4 Target Distribution Functions
Since we assume only a single real target, we assume that all COIs found are false targets
for purposes of intensity estimation.
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3.4.1 Separation of PDFs
If we have a COI distribution, we need to pull out the real target PDF from the false target
intensity. We can use our assumptions from Section 3.2 to do so. When ourMLE estimation
locates the single feature, we assume that this is where the target is located. We use the
feature parameters, and scale the intensity so it integrates to 1.0 over R. We use this as our
estimated real target PDF, fest(x):

fest(x) =
De−ξ (x)∫

R

De−ξ (x′) dx′
. (3.5)

Our estimated false target intensity δest then is the sum of the background intensity – the
unrelated false targets – and the remaining feature intensity, the related false targets:

δest(x) = ρ +
*..
,
1 −

1∫
R

De−ξ (x′) dx′
+//
-

De−ξ (x) . (3.6)

As we can see, equations (3.5) and (3.6) sum to λact as in Equation (3.4).

3.5 Updated Distributions
At any point in the middle of the search, we are able to estimate the real and false target
intensity based on the search conducted so far and the COIs detected. In order to use all
available information, we need to combine the prior information about the location of the
target with the new information we gained through estimates of the intensity based on search
effort and COIs.

One approach would be to simply accept the estimated intensity given by (3.4). However,
it is possible our search has covered only a small portion of R. In this case, we may believe
we have more, better information available from the prior target location distribution than
from the search. Alternately, if R has been almost fully searched, we may no longer trust
the prior distribution, instead feeling confident in our estimate based on a nearly complete
understanding of the various targets present in R. We consider two ways to combine the
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prior information with the new estimates: a Bayesian method, and an heuristic.

3.5.1 Bayesian Update to Real Target Distribution
Bayes’ Theorem offers a way to include all information. To proceed, we first assume that
our description of the prior distribution function for the real target, fpri(x), is not just a
single PDF but a set of distributions for each element of θprior = (C1,C2, η1, η2, α)T .

Note that we do not need ρ or D in the hyperparameter vector θ, since ρ subtracts out, and
D divides out, when we are finding the probability of the real target as in Equation (3.5).

Briefly, the posterior is proportional to the likelihood times the prior. If the known, current
state of our search is given by X = {xi, z(x)}, including both the points observed and effort
applied, then in terms of probabilities p(·) and likelihood l:

p(λ | X ) ∝ l (λ | X ) p(λ). (3.7)

Since λ is determined by its parameters θ, λ(x) = λ(x, θ), we can write the posterior
probability in terms of θ,

p(λ) = p(θ)

p(θ | X ) ∝ l (θ | X ) p(θ). (3.8)

Posterior probabilities are only proportional until normalized by multiplying by 1/p(X ),
the inverse of the prior (marginal) probability of X .

We use a hierarchical Bayesian point process model; see [21] Chapter 8. The hy-
perparameters in the terms of Bayesian hierarchical models are the components of
θ = (C1,C2, η1, η2, α)T ; θ ∈ Θ, which is defined as in Table 2.1.

We start by finding the log-likelihood. We have L from Equation (3.3); we drop the “actual”
from our λ, clarify the variable of integration, and state in terms of hyperparameters θ given
the known search state X :

L(θ | X ) =
ν∑

i=1
log

(
λ(xi, θ)B(xi, z(xi))

)
−

∫
R

λ(x′, θ)B(x′, z(x′)) dx′ (3.9)
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or in terms of likelihood l,

l (θ | X ) =
ν∏

i=1
(λ(xi, θ)B(xi, z(xi))) exp

*..
,
−

∫
R

λ(x′, θ)B(x′, z(x′)) dx′
+//
-

(3.10)

This is Equation (8.12) from [21]. Now we multiply the prior (in terms of θ) times the
likelihood (also in terms of θ as well as xi). This gives us the posterior probability for λ.

p(λ | X ) ∝ l (θ | X ) p(θ) (3.11)

Now we can find the posterior expected intensity at any given point x given X ,

E[λ] =
∫
λ

p(λ)λ dλ (3.12)

∝

∫
θ∈Θ

l (θ | X )p(θ)λ(θ) dθ (3.13)

E[λ(x) | X] ∝
∫
θ∈Θ

p(θ)
∏

i

λ(xi, θ)B(xi, z(xi)) e−
∫
R λ(x′,θ)B(x′,z(x′)) dx′λ(x, θ) dθ .

(3.14)

The posterior expected intensity E[λ | X] in (3.14) is the equivalent of the maximum
likelihood intensity calculated in Chapter 2. If we are considering the intensity λ in this
discussion to be the real target PDF, f (x), we can normalize it to a proper probability by
integrating λ(x) over all of our search region R to total probability 1.0. This is a difficult
integral to calculate numerically. We plot one example, assuming homogeneous application
of broad search effort, in Figure 3.2.

This method has the advantage that it can replace the need for the GAMS/CONOPT solver-
based maximization of the likelihood function to estimate the intensity. However, it has
two significant disadvantages. First, it is computationally demanding; the posterior target
PDF in Figure 3.2 took 24 hours to compute using 35 cores at 2.30 GHz in a brute-force
approach. Efficiency gains are possible with more sophisticated implementation, but these
calculations must be done many times in order to apply the optimization techniques in
Chapter 4. Second, the Bayesian posterior provides an intensity that generally fits the
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given model with a single elliptical feature (in this case). This means the intensity tends to
“split the difference” between the prior and the data, if the two are different. This leaves
relatively little probability at either the prior or the data-estimated location, with most of the
probability mass between the two – where there may be no information to suggest the target
is. It would be generally preferable to output a bi-modal probability distribution rather
than a unimodal one that inadequately represents either component of the convolution. We
could attempt to refine the model to allow for this, but instead – rather than adding to the
already daunting computational demands of the current Bayesian method – we use another
technique.

3.5.2 Heuristic
In lieu of using this Bayesian methodology throughout our search optimization method,
we use a simple heuristic in combination with our existing MLE estimate from Chapter 2.
Instead of completely discarding the prior and adopting the estimate from the data, we first
determine the percentage coverage of the search region R, φcov. We then use this fraction
of the estimated target probability, and its complement, the unsearched factor 1 − φcov , of
the prior. This allows us to use more of the data as we progress through the search, not
fully discarding the prior until we have full coverage of the entire search area. We define
the coverage factor as:

φcov =

∫
R

b(x, z(x)) dx. (3.15)

We could also consider not just howmuch searching was done to date, but also how strongly
the feature identified by our estimation of λ̂ presented itself. Features that strongly popped
out above the background intensity would be weighted more heavily than those which barely
increased likelihood over a constant background level of noise. This can be achieved by
using a ratio of the log-likelihood of λ̂est (LMLE) to the log-likelihood of a CSR where the
feature intensity parameter D is 0 and there is only constant background COI intensity ρ

(Lconst).

We can use the χ2 p-values from Section 2.4 as a approximate value for our confidence in
the feature we have detected, or a logistic function of the difference in L, which is similar.
This allows us to construct a weighted coverage factor for the heuristic, φheur, and real target
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distribution fheur,

φheur = coverage × feature confidence

= φcovP( χ2
6 ≥ ∆) (3.16)

≈ φcov
1

1 + e−(LMLE−Lconst−3) (3.17)

fheur(x) = φheur fest(x) + (1 − φheur) fprior(x). (3.18)

For estimating the false target intensity, we are not as concerned about the feature detection.
Since we are assuming a constant level of background clutter, we do not need to have
covered as much of the search region to make a good estimate of the background density.
Therefore we propose a more lenient rule for the false target intensity, using a scaling factor
ψfalse:

ψfalse = 1 − exp
(
−φcov/φ0

)
(3.19)

δheur(x) = ψfalseδest(x) + (1 − ψfalse)δprior(x). (3.20)

We use a value of φ0 = 0.25 as a reasonable percentage of the search region to give us
confidence in our estimate of the false target intensity. We show an example of results
from the heuristic in Figure 3.3. We do not claim that this heuristic is optimal, or near
it, in any search conditions. It is a reasonable, efficient way of combining the information
available while attempting to avoid over-fitting data. As such, it is sufficient as a starting
point to demonstrate an improvement over current methods that do not incorporate improved
estimates of target densities.

3.6 Posterior Distributions
After finding fheur(x) and δheur(x), we then need to calculate f̃heur(x) and δ̃heur(x) to ensure
we are using the residual densities considering the search effort we have already applied.

3.6.1 Unidentified COIs
Now we calculate the probability that each COI which has been detected but not identified
is the target. We use the methods from Section 7 of [9]. We define πi to be the probability
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that a COI at xi ∈ X = {x1, ..., xν} is the target of our search. We assume we have found
our best estimates for f and δ (such as fheur(x) and δheur(x)).

From [9], we begin with Equation (7.2) with updated notation, giving the probability of
detecting at x a real target u(x) or a false target r (x), and the probability a contact xi is the
real target π:

u(x) = f (x)b(x, z(x)) (3.21)

r (x) = δ(x)B(x, z(x)) (3.22)

Z (x) = Total broad search effort applied at x

P[Z] = Probability of detecting the (real) target with broad search allocation Z

=

∫
R

f (x)b(x, Z (x)) dx. (3.23)

π(xi) =
u(xi)/r (xi)

(1 − P[Z]) +
ν∑

j=1
u(x j )/r (x j )

. (3.24)

These formulas from [9] assume that no contact investigation effort has been applied to
any COI. This may be considered equivalent to the assumption that contact investigation
is memoryless, so the length of time a contact has been unsuccessfully investigated tells us
nothing about whether it is or is not the false target. Neither assumption is fully justifiable
in our intended context, however, as contacts may be partially investigated in the course
of the search, and a and A are not required to be equal. In our semi-adaptive search
construct, we anticipate having multiple COIs that have been unsuccessfully investigated.
We therefore modify these equations by allowing for the possibility that contacts have been
unsuccessfully investigated with contact identification effort wi.

To do so, we redefine r (x) and u(x) as follows, since (1 − a(x, w)) and (1 − A(x, w)) are
the probabilities that a real and false target will still be unidentified after the application of
contact ID effort wi to a contact xi:

ũ(xi, wi) = f (xi)b(xi, z(xi))(1 − A(xi, wi)) (3.25)

r̃ (xi, wi) = δ(xi)B(xi, z(xi))(1 − a(xi, wi)). (3.26)
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We can now use these posterior values in our expression for the posterior probability each
COI is the target, π̃i, as follows:

π̃(xi, wi) =
ũ(xi, wi)/r̃ (xi, wi)

1 − P[Z] +
ν∑

j=1
ũ(x j, w j )/r̃ (x j, w j )

. (3.27)

This will be close to πi if a is close to A, and π̃i = πi if wi = 0.

3.6.2 Undetected COIs
We need to find the posterior distributions for undetected real and false targets after we have
applied an amount of broad search effort over R. The estimates fest and δest in Equations
(3.5) and (3.6) represent the actual, total distribution of targets, but we have already detected
some of them. We need to find the intensity of undetected targets, or the non-observed
intensity. As in optimal search, we use Bayes’ Theorem to reduce them by the applied broad
search probability. Again, we start by following Stone in [10], defining:

Stone uses this to give the posterior real target distribution, given the single real target has
not been found (also listed as 6.6.4 in [6]):

f̃ (1) (x) =
f (x) [1 − b(x, Z (x))]

1 − P[Z]
. (3.28)

We now allow for unidentified COIs. Therefore we must add a term to the denominator to
account for that in the total probability and ensure it sums to 1, similar to in Equation (3.27)
and Section 7 of [9],

f̃ (x) =
f (x) [1 − b(x, Z (x))]

1 − P[Z] +
ν∑

i=1
ũi/r̃i

. (3.29)

Posterior false target intensity is not affected by the partial investigation of contacts as it is
not required to scale to 1.0; we use Equation (6.6.12) from [6] without modification:

δ̃(x) = δ(x)[1 − B(x, Z (x))]. (3.30)
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3.7 Implementation
We now have the a mixture distribution for the real target probability: over space and over
each COI. We also have amixture distribution for false targets: over space and for each COI;
in addition to all COIs that have already been identified as false targets. We summarize these
distributions in Table 3.1. See also Figure 3.4 for an updated outline of the enhancements
to the search model.

Table 3.1. Summary of Probability Distributions

Target Status Prior Data Estimate Posterior

Real
Undetected fprior fest fheur f̃heur

COI - - πi π̃i

False

Undetected δprior δest δheur δ̃heur

COI - - 1 − πi 1 − π̃i

Identified - Known

We implement the techniques described in this chapter onto the MLE formulation from
Chapter 2 in R. This provides the set of inputs needed to optimize the application of search
effort, which we discuss in the next chapter.
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(b) Intensity Estimate for Uniform Effort
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(c) Non-uniform Broad Search Effort
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(d) Intensity Estimate for Non-uniform Effort

Here we show how the estimated intensity is affected by the broad search effort
applied. Both rows use the same randomly generated COIs. The top row uses
a search effort uniformly applied over R. The bottom row uses 10x more effort
applied in the left half of the region than the right half. This has the expected
effect of pulling the intensity estimate to the right while greatly increasing its
intensity, since those 5 points may be the equivalent of 50 if they were on the left
side of R.

Figure 3.1. Example: Effect of Non-uniformly Applied Effort on Intensity
Estimate
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(a) Prior Real Target Density
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(b) Bayesian Posterior Real Target Density

Here we show example results of using a Bayesian Hierarchical Model to find
the posterior target density, showing both the prior and posterior over the search
region with observed COI locations. This method retains the elliptical model in
combining the prior with the data. The posterior plot took 24 hours to produce on
a 36-core workstation, yet still has some white pixels with numerical errors from
the computation involved. Note differing intensity scales; the prior is at half the
scale of the posterior.

Figure 3.2. Bayesian Prior and Posterior Density
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(a) MLE Estimate of Real Target Probability
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(b) Heuristic Posterior Real Target Probability

Here we show results of building a usable estimate of real target distribution and
false target intensity with the heuristic. In contrast with Figure 3.2, the heuris-
tic combines the prior with the data without attempting to retain an elliptical
distribution.

Figure 3.3. Example: Estimate of Target Locations
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Optimal Semi-Adaptive Search with Estimated Densities
(2017)

Prior 
Information

Current Estimate:
    Real Target Density
    False Target Intensity

Do a Search
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Chapter 3
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Chapter 4

Chapter 5
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This updates Figure 1.3 showing how we create updated estimates for the density
of real and false targets to pass to the search optimization in Chapter 4.

Figure 3.4. False Target Search with Updated Probability Distributions
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CHAPTER 4:
Search Optimization

4.1 Background and Overview
We can now develop a search plan that optimizes the allocation of future search effort. At
any time in the search, we can use the methods in Chapter 3 to update our estimates for the
distributions of real and false targets using all available information. We use these estimates
to find the “payoff” of each possible allocation of search effort. Payoff is measured in terms
of increased probability of detection per unit of time spent searching. We can then select
the search effort allocation that gives us the highest payoff.

Possible allocations of effort include broad area search at any location in the search region
R, and contact identification effort applied to any previously detected COI. To allow us
to include COIs that have already been discovered, we modify the method from [10] as
described in Section 4.5. Following Stone et al., we define our search plan in terms of
contingent contact identification effort [10]. This is the amount of contact identification
effort w (x) our plan is willing to apply in case a COI is detected at the location x. The
actual amount of effort needed to identify any given contact is a random variable, but we
can calculate its expectation using our knowledge of the search functions and probability
distributions from Chapter 3.

For any given amount of broad or total search time, we can calculate the optimal payoff
rate leveled over all possible allocations of search effort. Then we simply allocate search
effort to achieve that payoff rate equally everywhere. Our end result is a search plan Φ that
gives the optimal broad area search density function m∗, contingent contact identification
density function ω∗, and unidentified COI identification effort allocation C∗ = {C∗1, ...C

∗
ν}.

Φ is then a non-adaptive search plan, given the input real and false target distributions; in
Chapter 5 we show how to repeatedly calculate Φ over time to make a semi-adaptive plan.
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4.2 Optimal Search
As a starting point and for comparison, we include the algorithm for optimal search allocation
in the continuous case without false targets in Appendix B [8].

4.3 Definitions
We adopt the notation in [10], with some modifications and extensions. For clarity, we
define our key terms that that we use throughout this chapter:

R = continuous search region in 2-dimensional space

x = a location in R, x = (x1, x2)

m(x, s) = broad search effort density function

s = an amount of broad search time

t = an amount of total search time

z(x) = a quantity of broad search effort applied at x

w = a quantity of contact investigation effort

ω(x, t) = contingent contact investigation effort density function

= contact ID effort willing to exert at x by total time t if a COI is found there

xi = All COIs previously located but not confirmed as false targets for i ∈ {1, ..., ν}
Ci = Amount of contact ID effort applied to unidentified COI i

Φ = Search plan, in terms of broad area density, contingent COI density, and COI effort.

= {m(x), ω(x),C = {C1, ...,Cν}} .
We continue to use the search functions as defined in Section 3.2, repeated here for conve-
nience:

b(x, z) = Real target broad search detection function given broad search effort z applied at x

B(x, z) = False target broad search detection function given broad search effort z applied at x

a(x, w) = Real target contact ID function given contact ID effort w applied at x

A(x, w) = False target contact ID function given contact ID effort w applied at x

U = Broad search effort application rate (per time)

42



Λ = Contact ID effort application rate (per time).

4.4 Divided Search Effort
We begin by discussing the class of search plans when it is optimal to divide search effort
between broad search and contact investigation. We reproduce Stone et al.’s method for
optimization of a search under these conditions from [10] Section (4.1). We use this as a
basis for modifications to better implement it in the context of a semi-adaptive search with
density estimates.

4.4.1 Assumptions
We adopt and comment on the assumptions from [10] (4.1).

1. The first assumption requires that the broad area sensor is equally as effective against
any false targets as against the real target, and that it follows a "law of diminishing
returns" as search effort increases. In practice there may be differences in a sensor’s
ability to detect false targets and the real target; these are difficult to know ahead of
time due to a variety of factors.1 Diminishing returns is a reasonable assumption in
practice.

2. The second assumption considers contact identification. In practice, there may be
discontinuities to contact identification associated with deep ocean operations, but to
satisfy this assumption these must be approximated by continuous functions.2

3. The third assumption requires that the return on additional contact investigation effort,
in terms of probability of successful identification, is decreasing. It must be easier
or faster to identify a real target than a false target, so that the longer the contact
identification continues unsuccessfully, the less likely that particular COI is to be the
real target.

4. The fourth assumption requires either an upper bound on time for false target identi-
fication, or on the return on additional contact investigation. These allow us to match

1The condition of the target, and the nature of the false targets, are often unknown, and both are significant
in a sensor’s detection rate.

2One example would be the use of a ROV to investigate a sonar contact. The ROVwill need to be launched
from the host platform, and lowered to the sea floor, before it can begin its search; and it will then need to be
raised and recovered once complete.
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contact identification with broad search – ensuring they are not finite to infinite. Both
are reasonable in practice.

4.4.2 Optimal Search Plan
In implementing our semi-adaptive search, we use the following method from [10] to find
the optimal allocation of search effort.

The multiplier k > 0 corresponds to an allocation of broad search effort. It is the rate of
return, in terms of probability of search success, for increased allocation of search time, in
units of 1/time. For optimality, k should be equal across all possible allocations of effort,
region-wide.

The return on additional contact investigation effort ζ , given in probability of success,
is [10]

ζ (w) ≡ a′(w)/(1 − A(w)), (4.1)

where a′(w) is the derivative of a with respect to w. The amount of effort a searcher can
expect to expend investigating a false target at x, if the searcher is willing to expend a
maximum of w effort on contact investigation [10], is

α(x, w) =
∫ w

0
[1 − A(x, u)] du for w ≥ 0. (4.2)

Stone et al. account for the additional effort required to investigate false targets by defining
the rate of change of the real target detection probability r [10]:

r (x, k) =
Λk

U
[
Λ f (x)a

(
v (x, k)

)
− kδα

(
v (x, k)

)] . (4.3)

Here the rate r (x, k) is a value of b′(z), the rate of change of the real target detection
probability, with units 1/effort. It levels the broad area search over R by ensuring broad
search effort is applied over the regionwith the same rate of return, so that broad search effort
z could not be moved from one location to another and increase the real target detection
probability.
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The broad search effort u is defined in [10] as an inverse function of the rate of return of
broad search effort, bound by b′(0):

u(x, k) = an amount of broad search effort m corresponding to a multiplier k

=




b′−1(r (x, k)) if 0 < r (x, k) ≤ b′(0),

0 otherwise.
(4.4)

The contact identification effort v is expressed as the inverse of the rate of return of contact
identification effort ζ [10]:

v (x, k) = an amount of contingent contact ID effort ω corresponding to a multiplier k

=




∞ if k ≤
Λ f (x)
δ

ζ (∞),

ζ−1
(

δk
Λ f (x)

)
if
Λ f (x)
δ

ζ (∞) < k ≤
Λ f (x)
δ

ζ (0),

0 if
Λ f (x)
δ

ζ (0) < k .

(4.5)

If the region-wide search rate of return k is greater than the ω = 0 rate of return on
contact identification available at x, Λ f ζ (0)/δ, then no contact identification effort is
applied and v = 0. If the region-wide search rate of return is less than that available with
infinite application of effort, Λ f ζ (∞)/δ, then v will be infinite, requiring infinite contact
identification effort for optimality. Infinite contingent allocation of contact identification
effort is equivalent to ICCI.

To find the broad search time associated with this multiplier k, Stone et al. define H (k), the
broad search time s corresponding to a multiplier k [10],

H (k) =




∞ for k = 0∫
R

u(x, k)
U

dx for 0 < k < ∞

0 for k = ∞.

(4.6)

Lastly, γ is the value of the multiplier k that is optimal for the available broad search time
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s – leveling the rate of return of effort across all possible allocations [10];

γ(s) = H−1(s). (4.7)

The optimal allocation of broad search effort m and contingent contact identification effort
ω for available broad search time s is then [10]:

m∗(x, s) ≡ u(x, γ(s)) (4.8)

ω∗(x, s) ≡ v (x, γ(s)) for x ∈ R, 0 ≤ s ≤ ∞. (4.9)

4.5 Extensions to Method
Note that the method in Section 4.4.2 does not consider any unidentified COIs when
optimizing over the space. This is appropriate for a single plan, such as an ONAP, which
starts with no contacts and ends when no more search time is available. A semi-adaptive
plan, however, may need to optimize search allocation when there are still unidentified
contacts from previous increments of effort.

Additionally, this plan optimizes for a given broad search time, disregarding contact identi-
fication time as irrelevant to the broad search allocation. However, total search time is often
what is constraining the search operation, given availability and cost of the physical search
assets.

4.5.1 Unidentified COIs
We extend this model to allocate contact identification effort to unidentified COIs, Ci. We
use the contact identification effort function (4.5), at each contact’s location, using the
optimal multiplier, v (xi, γ(s)). Instead of calculating f and δ at xi, we use the probabilities
π̃i for f , and – since each COI must be either a real or false target – (1− π̃i) for δ. Otherwise,
calculation and bounds on vCOI(xi) are the same as in Equation (4.5):
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vCOI(xi, k) =




∞ if k ≤
Λπ̃i

(π̃i)
ζ (∞)

ζ−1
(
δk
Λπ̃i

)
if
Λπ̃i

(1 − π̃i)
ζ (∞) < k ≤

Λπ̃i

(1 − π̃i)
ζ (0)

0 if
Λπ̃i

(1 − π̃i)
ζ (0) < k,

(4.10)

Ci (s) = vCOI(xi, γ(s)). (4.11)

We take these contact investigation effort values for the xi to complete our optimal search
plan Φ∗(s) =

{
m∗(s), ω∗(s),C∗(s) = {C∗1 (s), ...,C∗ν (s)}}. Since Ci is contact investigation

time, its inclusion in Φ does not alter the allocation of effort constrained by broad search
time.

4.5.2 Optimizing for Total Time
Our input parameter of interest to a search planner is likely a total search time available or
remaining. Planning a search in terms of broad search time has reduced practical utility
without consideration for the additional time required to investigate false targets present in
the search area.

In order to find the optimal search for a given broad time, we can redefine H (k) = s as
Ht (k) = t, giving the expected total search time for a givenmultiplier k. H in (4.6) calculates
the duration of broad area search. Ht needs to add terms for the expected contingent contact
identification effort ω for each COI discovered and the allocated identification of known
contacts Ci,

Ht (k) =




∞ for k = 0∫
R

u(x, k)
U

dx +
∫
R

δ(x)B(x, u(x, k))
α(x, v (x, k))

Λ
dx

+

ν∑
i

vCOI(xi, k)/Λ for 0 < k < ∞

0 for k = ∞.

(4.12)
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We define γt to be the optimal value of the multiplier k associated with this available amount
of total search time t:

γt (t) = H−1
t (t). (4.13)

The optimal search plan Φ∗ is then defined by γt (t), substituting t for s and γt (t) for γ(s)
in Equations (4.8), (4.9), and (4.11):

Φ
∗(t) =

{
m∗(t), ω∗(t),C∗(t) = {C∗1 (t), ...,C∗ν (t)}} . (4.14)

4.6 Immediate and Conclusive Contact Investigation
Our search plans allow for inconclusive contact investigation, in contrast to the discussion of
ICCI and its relaxation to allow “breathers” but with conclusive investigations in [6]. In [10],
breathers and inconclusive contact investigations, rather than ICCI, are recommended when
conditions (4.1), which we also apply here, hold.

We do not study the alternative set of assumptions (4.2) studied in [10], under which ICCI is
optimal. Those state that α/a is nondecreasing as a function of w from (0,∞). This means
that as more contact identification effort is applied to a COI, the expected investigation
time per unit probability never increases. Thus there are no diminishing returns to contact
investigation. This implies that it is always a beneficial allocation of effort to investigate a
COI more, implying immediate and conclusive investigation is the optimal policy.

We simulate ICCI search plans plans for comparison to semi-adaptive plans that allow
breathers and interruptions in Chapter 5.

4.7 Expected Outcomes
With an optimal search plan, we can calculate some expected outcomes that are of interest
to search planners.

We can write the probability that the time to identify the target is less than or equal to the
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search time t, as:

P(m, λ, t) ≡
∫
R

f (x)b(x,m(x, t))a(x, ω(x, t)) dx +
ν∑
i

π̃ia(Ci (t)), (4.15)

where P is the probability of having identified the target by total search time t using plan
(m, λ). The first term is the probability of identifying the target if it is currently undetected;
this is Equation (1.3) from [10]. The second term is the probability of identifying the target
if it is currently detected but unidentified - that is, a COI. P(t) has the form of a Cumulative
Distribution Function (CDF).

We can also state the mean time to identification of the target, (1.6) in [10]:

µ(Φ) =

∞∫
0

tP′(m, λ, t)dt. (4.16)

Here P′(m, λ, t) is necessarily the PDF, rather than the CDF, found by taking the derivative
of P with respect to t. This means it is the rate of return, in terms of increased probability,
of additional total search time, which we defined as the multiplier k. Since Ht (k) = t, we
can then say:

P′(m, λ, t) = k = H−1
t (t)

µ(Φ) =

t=∞∫
t=0

tH−1
t (t)dt. (4.17)

We could substitute any reasonable maximum total search time for the upper limit of the
integral, and then have the mean time to target identification given t total time available and
a success probability of P(t).

Note in real-world search operations, there is uncertainty in the total search time available.
There is risk that our search could terminate early, or there is an opportunity to extend it if
needed. We could then use tools from decision theory to decide on an optimal plan. One
example would be to maximize the expected probability of success given the possible search
times available, although there are many possibilities. In this paper, we take the search time
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available as a given and do not attempt to account for its uncertainty.

We plot an example of the calculated probability of success against total time available t

in Figure 4.1. We can use the two terms in (4.15) to break out the probability that the real
target is detected by broad search or as one of the current COIs by contact identification.
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Here we show the relationship between chances of success and total effort applied
for an example search, given current estimates mid-operation. It is based on an
ONAP snapshot that may be taken at any point in an OSAP. As expected, more
search time gives a higher probability of success, which may be broken out as the
sum of the probability the target is found through broad search with contingent
identification effort (in blue), or by identifying one of the current COIs (in red).

Figure 4.1. Probability of Success vs. Search Time
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4.8 Implementation
We implemented this model in R in order to support the simulation study of Chapter 5. This
required extensive use of numerical methods for calculations. Solving Equations (4.7) and
(4.13) in particular involve two-dimensional integrals, numerical and symbolic derivatives,
and inverses calculated by root-finding.

4.8.1 Numerical Approximations
We approximate some functions to speed computation. To do so, we calculate a number of
points – which is computationally expensive – and store those values for interpolation in the
future, which is very fast. Interpolations are as accurate as the numerical approximations
themselves.

For example, we approximate b′−1(x, z) from Equation (4.4) in the common case where b

does not vary with x. We sample b′−1(z) over 250 z-values in its domain [0, b′(0)]. We then
use a cubic spline interpolation of these points as our approximation b′−1

approx. The difference
between b′−1 and b′−1

approx lies within the accuracy of the numeric functions used for inverses
and derivatives; see Figure 4.2. This reduces the computation time for this function u,
which can be evaluated more than 30,000 times in a single optimization at the level of detail
we specified, by a factor of 650. We also implement approximations for ζ , f , and δ using
similar methods and with similar precision and reduction in computation time.

We show search effort allocations for example searches using simulated data in Figures 4.3
and 4.4.

4.8.2 Semi-Adaptive Plans
The optimization discussed in this chapter generates a static, non-adaptive, search plan Φ.
It allocates conditional contact investigation effort for contacts that may be detected, but it
is non-adaptive. To make it a semi-adaptive plan, we need to apply it, execute some amount
of search, and then re-evaluate our plan. We discuss this in Chapter 5.
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The error in the approximation of b′−1 is smaller than the error of the numerical
functions defining b′−1 itself, on the order of 3 × 10−5.

Figure 4.2. Numerical Approximation Error of b′−1
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Results of the optimal allocation of search effort with simulated data. Here the
searcher has already completed three sorties of search, detected four contacts, and
identified two as false targets.

Figure 4.3. Example of Search Optimization
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(d) Allocation of Contact ID Effort

Results of the optimal allocation of the next 100 units of search time. The searcher
splits effort among broad area search, contingent identification of any new COIs
detected, and attempting to identify the two COIs.

Figure 4.4. Example of Search Optimization (continued)
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CHAPTER 5:
Simulation

5.1 Semi-Adaptive Search
We use some additional terms to describe the more complex searches studied in this chapter.

A sortie is a single asset applying search effort in a discrete time, usually with limited ability
to dynamically re-task. For example, a UUV conducts a sortie as a single mission from
launch to recovery from its host platform, and typically will not update its programmed
navigation and sensor tasking.

A search operation is a sequence of one or more sorties searching for the same target.

In Section 5 of [9], Stone and Stanshine show that in general, there is no guarantee that a
search plan is uniformly optimal – that is, that a search plan optimal in total time t2 > t1 is an
extension of the optimal plan for time t1. This presents a difficulty in our simulation given
the sortie construct; if an operation is planned as a sequence of optimal sorties, the sum of
the sorties may not be optimal for the operation as a whole. We plan for the total search time
remaining in the operation, and plan each sortie to execute the appropriate fraction of the
search plan that is optimal for the operation. As with any optimal allocation of effort, this
presents difficulties in practice as discussed in Section 1.2, but it demonstrates the potential
advantages of this method.

Stone discusses that an OSAP can be updated continuously – with the interval between
updates approaching zero – to make it have the greatest performance gains [16]. We do
not model such a continuous OSAP, but use a discrete semi-adaptive plan with discrete
updates on fixed time intervals. In practice, many searches are performed in sorties. One
or more search assets will be launched for a sortie of a specific duration. All data will be
downloaded upon recovery and analyzed. The sortie provides a natural point at which to
re-set the search. In high-risk environments relevant for military searches but also many
rescue and recovery efforts, it is advantageous for the search asset to follow a predictable
path so that other units will know where it is at any given time. It would be difficult to
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track the searcher if it were dynamically re-tasking itself during a search sortie. This also
simplifies our computations considerably, as we would have to update not just the posterior
and a new search plan, but re-calculate estimates for real and false target densities with each
update.

5.2 Model Comparison
We compare search plans using estimates as developed in Chapter 3 to other methods from
the literature. We simulate the following search plans:

• ONAP. This uses the model of Chapter 4 but only conducts a single sortie for the
entire search time available. Executing a single sortie, it does not update allocations
of search effort, making it a non-adaptive plan.

• ONAP with ICCI. Rather than permitting inconclusive contact investigation with
breathers, this non-adaptive model – of a single sortie – requires all contact investiga-
tions to be immediate and conclusive. As discussed in section 4.4.2, this is equivalent
to setting the contingent contact ID effort allocation ω = ∞.

• OSAP. This uses the model of Chapter 4 and conducts multiple sorties. With each
sortie, it updates its search plan as in Chapter 4, but does not estimate the target
density as in Chapters 2 and 3.

• OSAP with ICCI. This is semi-adaptive search requiring immediate and conclusive
contact investigation, rather than permitting inconclusive investigation and breathers.

• Optimal Non-Adaptive Plan with Estimates (ONAP-E). This uses the model of
Chapter 4 and conducts a single sortie. It starts by updating the target distributions f

and δ as described in Chapters 2 and 3, and then calculates a search plan as in Chapter
4. In order to calculate an estimate, an ONAP-E can only be used for a search already
in progress.

• Optimal Semi-Adaptive Plan with Estimates (OSAP-E). This uses the model of
Chapter 4 and conduct multiple sorties. With each sortie, it will first update the target
distributions f and δ as described in Chapters 2 and 3, and then update its search plan
as in Chapter 4. This model is the focus and primary contribution of this study.

• OSAP-E with ICCI (OSAP-ICCI-E). We use this method to test whether our density
estimation provides an advantage when ICCI is used.

• Optimal Semi-Adaptive Plan with Accepted Estimates (OSAP-AE). This plan dis-
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cards the prior density and intensity of real and false targets once it is able to estimate
from data, and fully accepts the estimates to use in search optimization. It does not
use the heuristic from Section 3.5.2.

5.3 Estimating Search Success
We first use simulation to evaluate our non-adaptive model from Chapter 4, to confirm the
formulas for expected search outcomes of Section 4.7. To do so, we randomly generate
2000 search regions using an NHPP constructed as in Equation (2.4). We then simulate
the application of broad search effort uniformly over R sufficient to detect 50% of all
targets. This represents the state of a search in the middle of an operation. We compare the
model’s estimated probability of search success to simulated results of running it in terms
of probability of success, and plot how the estimate compares to the simulated results. We
use both our ONAP-E model which first builds an updated estimate of the real and false
target densities and then finds the optimal allocation of search effort, and an ONAP search
that calculates the allocation of effort based on the prior real and false target densities.3
As Figure 5.1 shows, these estimates for the probability of success are quite accurate, and
estimating the intensities helps improve them substantially.

5.4 Simulation Study
We next use simulation to evaluate the performance of the search models from Section
5.2 under various conditions. Within the scope of this study, we do not execute a full
experimental design to attempt to build a response surface for the performance of these
model under various combinations of factors, with a focus on OSAP-E. We do, however,
make some preliminary investigations to show the relative performance of this approach
and its potential for improved results in terms of search success when searching in the
presence of false targets. This adds significantly to the simulation studies of false target
optimal search in the literature. Finally, we identify some strengths and weaknesses that
may illuminate opportunities for future investigation. Our specific goals are to:

• Investigate the effect of the number of sorties in a search operation

3Note that we do not have a means to directly calculate the probability of success for a semi-adaptive
search, as semi-adaptive searches are built as a sequence of non-adaptive searches.
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• Investigate the effect of the false target intensity on background intensity and feature
intensity

• Investigate the effect of the time to identify targets
• Investigate the effect of time available in the operation.
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We compare simulation results to predicted search success from our optimization
over 2000 trials. Both closely track the a diagonal line of slope 1.0 that represents
a match between estimated and simulated probability of success. The ONAP-E
model that first calculates the MLE estimates for real and false target intensities,
provides more conservative estimates of the probability of success, in contrast
to the ONAP model that does not estimate the densities. ONAP is below the
line because its prior real and false target distributions, which are centered at
the origin, are not identical to the actual ones, which have an elliptical “feature”
centered elsewhere in any particular simulated search.

Figure 5.1. Comparison of Predicted vs Simulated Success Rate

5.4.1 Methodology
We conduct ten replications for each randomly generated search region with its realized
distribution of false targets and the real target location. We generate a sufficient number
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of regions in order to achieve significance in our key results. We calculate confidence
intervals for success probability in the normal way using the t-distribution and an α = 0.95
confidence level.

We use the factor settings in Table 5.1 as our baseline:

Table 5.1. Baseline Factor Settings for Simulation

Factor Baseline Setting

Number of Sorties (n) 16

Background Intensity (ρ) 0.10 (∼ 10 false targets in R)

Feature Intensity (D) 4.0 (∼ 7 false targets in feature)

Identification Time - real target (E[a]) 12

Identification Time - false target (E[A]) 16

Total Time Available in Operation 200

We report the probability of success for a given search, rather than mean time to success.
This is because the mean time to success assumes that a search will last as long as it needs
to be successful. A planner – and decision maker – is interested in how likely a search is
to be successful given the time available; or how much time must be planned for a search
operation to have an acceptable probability of success. Further, in the sortie construct
of real-world search operations, the time of success is dependent on the path chosen and
sortie-level details that would require a level of resolution greater than considered in this
study. A success curve similar to that in Figure 4.1 can be calculated at any point in the
search, and will provide information on the relationship between success probabilities and
time that planners need to consider.

5.4.2 Implementation Details
We implement these simulations in R, using code developed for the methods of Chapters
2 through 4. We include the ability to track the status of a search over time and multiple
sorties. Typical run times for a simulation of a single operation of 16 sorties were on the
order of 15 minutes if the search was unsuccessful. More computation time is required for
the search optimization of Chapter 4 than the intensity estimation of Chapter 2. Parallel
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processing on 36-core Dell Precision 7910 workstations enabled a sufficient number of
replications for this study.

We ensure that simulated searches do not exceed the total time allocated. This can lead to
some issues if the estimate of false target density is off. For example, if we plan for a 30
hour search and we need to terminate the search at 30 hours of actual searching, we may
have planned an expected value of 10 hours of contingent contact identification. If the false
targets are denser than expected, we could need to spend 20 hours identifying them, but
we have to end the search at 30 total hours after only half of the false targets have been
identified per the plan. In this case we assume we search the false targets in order, from
highest to lowest probability, until the target is identified identified, allocated time is used
up, or the sortie time expires. Alternatively, we may have fewer false targets than expected
and have leftover search time, that is unused for lack of targets to identify. We recycle this
time, making the next sortie slightly longer by the amount of time not used in the previous
sortie. This is to ensure fair comparisons, but is not far from operational practice.

5.5 Results
We report the results of simulation experiments using over 80,000 simulated searches. A
table of detailed results is included in Appendix C.

5.5.1 Number of Sorties
We vary the number of sorties in a search operation to change the number of times a semi-
adaptive search updates and recalculates allocations of effort and estimates of intensity. In
Figure 5.2, we show that OSAP-E significantly outperforms both OSAP and ICCI when it
divides an operation in eight or more sorties (and thus eight or more discrete updates). It
appears that 16 sorties are a sufficient number of updates: we do not see a significant change
in outcomes as we increase the number of sorties for a fixed total search time.

We can see that the ICCI and the Immediate and Conclusive Contact Identification with
Estimates (ICCI-E) plans appear to have indistinguishable results. They outperform the
ONAP methods that allow inconclusive contact investigation when there is only one sortie,
representing a non-adaptive plan. However, as the plans with split allocation execute more
sorties, becoming true semi-adaptive plans, they rapidly outperform the ICCI plans. This
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is expected, as this search meets the conditions (4.1) for split allocation to be optimal as
in [10].
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This plots the performance of our models from Section 5.2 by number of sor-
ties. We can see the advantage of attempting to update the prior probability
distributions as the number of sorties increases, increasing the opportunity to take
advantage of this additional information. There are minimal returns beyond 16
sorties, so we use 16 sorties in semi-adaptive searches for the remainder of this
study. Note that the ONAP curve is plotted for comparison, but only executes a
single sortie.

Figure 5.2. Comparison of Search Methods by Number of Sorties

5.5.2 Background Intensity
We simulate various levels of background intensity ρ and plot the results in Figure 5.3.
Over a total search area of 100 notional units, the range of this graph is from an average
of 5 to an average of 20 false targets in the background clutter, compared to an average of
7.5 false targets in the feature. Again we see that OSAP-E significantly outperforms OSAP,
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showing the potential benefit of our intensity-estimating approach. While we would expect
that more background clutter would make the search more difficult, this does not appear to
always be the case. OSAP does not decline with ρ over this relatively broad range. This
appears to be an inherent advantage of semi-adaptive search plans under these conditions.
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Success probability is relatively constant with the background level of false target
clutter. Unexpectedly, both semi-adaptive methods may perform better with more
background targets.

Figure 5.3. Effect of Background False Target Intensity ρ on Success Rate

5.5.3 Feature Intensity
In Figure 5.4, we plot the effect on success rate of varying feature intensity D. We see that
OSAP-E may perform worse than OSAP when the feature is weak – at the left end of the
graph, less than 1 false target in the feature on average. It is possible the MLE estimation
is finding features that do not exist and actually harming the search by diverting effort,
rather than adding value by improving the intensity estimates. However, this difference is
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not significant, p = 0.22 in a two-sided t-test of their simulated success probabilities at
D = 0.5. For any more intense features with at least 3.5 expected false targets (D ≥ 2),
OSAP-E significantly outperforms OSAP by taking advantage of the additional information
in the MLE estimates. As the expected number of feature false targets grows large, the two
methods may begin to converge. It is possible they become time-limited by the number of
false targets that must be investigated.

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Feature Non−related False Target Intensity

S
uc

ce
ss

 P
ro

ba
bi

lit
y

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

OSAP−E
OSAP
ONAP

0.95 Confidence Interval

Here we show how effectiveness varies when the peak feature intensity changes
from low to high. OSAP-E appears to benefit from at least some false targets in
the feature, allowing it to better estimate the location of the target.

Figure 5.4. Effect of Feature Peak Intensity D on Success Rate

5.5.4 Identification Time
We show performance of OSAP and OSAP-E over a range of expected contact identification
times in Figure 5.5. OSAP-E appears to consistently outperforms OSAP over the entire
range considered, but this advantage is not statistically significant. Average simulation
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success probabilities decline steadily with increased time to identify false targets for all
methods. Unlike Stone in [16], we do not see a significantly greater advantage to the
semi-adaptive methods as identification time increases.
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Success rate declines as contact identification time increases for all methods.

Figure 5.5. Effect of Contact Identification Time E[A] on Average Simula-
tion Success Probability

5.5.5 Total Operation Time
We anticipate that for low search times, OSAP-E might not have much if any advantage over
OSAP. This is because of the thresholds used in the heuristic, which require a significant
fraction of search to be completed before accepting the estimates for use in the search
optimization over the priors. Figure 5.6 confirms that the OSAP-E does converge to the
OSAP for relatively low total search times. As the heuristic is written - in terms of the
coverage fraction of the search region - it is dependent on the size of the search region, not
just the prior. This might depend too heavily on the region rather than the prior, suggesting
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φ(1)
cov as one potential improvement for future experimentation:

φ(1)
cov =

∫
R

fest(x)b(x, Z (x)) dx. (5.1)
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Success rates for OSAP and ICCI methods scale linearly, but OSAP-E does better
past a threshold and begins to outperform the other methods. This may be related
to thresholds programmed into the heuristic.

Figure 5.6. Effect of Search Time Available t on Success Rate

5.5.6 Heuristic
We omit a detailed study of the heuristic. Its intention is to ensure we retain an appropriate
weighting of the prior distribution for the false target and do not accept a weak estimate built
on a small sample of data. In this case, however, it would be better to discard all prior data
and completely accept the estimate for optimizing search effort. In Figure 5.7 we show that
accepting the estimate allows the OSAP-AE to retain a significant advantage over OSAP at
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low operational search times and chances of success. Other target distributions – such as
weak features, or when the prior does not exactly match the distribution used to generate
the targets in R – could reveal some advantage to the heuristic’s inherent conservatism.
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If we simply accept the estimate of false target intensity, rather than scaling it
with the prior as in the heuristic, OSAP-AE outperforms OSAP-E at low total
search times. This suggests further work evaluating the heuristic and identifying
situations when it performs well.

Figure 5.7. Comparison of Accepting Estimates with Heuristic Blending
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CHAPTER 6:
Conclusion

6.1 Significance of Results
This study demonstrates previous theoretical work on non-adaptive search plans, and those
with immediate and conclusive contact investigation, in a flexible simulation study over
two-dimensional space. We are able to compare empirical success rates for false-target
searches and the effectiveness of semi-adaptive search plans in a more realistic simulation
than the small number of boxes used in past work. Additionally, in certain situations such
as those studied here, the use of estimates of target density is shown to improve search
performance: it is possible to take advantage of information on the relative locations of
targets to improve the probability of search success.

6.2 Operational Utility
The OSAP-E search planningmethodmay not be different fromwhat an experienced analyst
could do with appropriate time and tools available. However, there is an advantage to
automating the process for consistency and as a supplement for experience. It is also able to
minimize the opportunity for human biases and errors, including confirmation bias and over-
optimism, enabling impartial detection of subtle features. A tool using these techniques
– implemented on a laptop computer and deployable to the site of any search operation
worldwide – could be a valuable addition for an experienced analyst, just as a weather
model assists a knowledgeable weatherman in making better predictions. Additionally, an
automated tool for search planning based on these technique could be applied by autonomous
vehicles with long mission durations, such as mine hunting Unmanned Surface Vehicles
(USVs) and UUVs.

The ability to employ the tools developed by Stone and others to estimate the probability
of success given remaining time available as in Figure 4.1– based on all data collected up
to the point of decision – can have use in risk assessments and commander’s decisions on
whether and for how long to proceed with a search operation.
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Not all searches will meet the assumptions used here to improve results with estimation
of intensity. In these cases – when there are not expected to be any false targets related
to the real target – semi-adaptive search without estimated intensity is a good option that
outperforms non-adaptive search. Improved heuristics may point towards a single solution
that can balance these cases better and not require a selection of method ahead of time.

Further, the case where the time to identification for real targets may be longer than for false
targets deserves further study. Although we did not see any clear advantage to the use of
estimates in ICCI searches, there may be some, particularly in the domain of (4.2) from [10]
when ICCI searches are optimal over split effort searches. If not, that may provide insight
into the strengths of this method.

6.2.1 Success Criteria
This study focuses on finding the actual black box itself as the goal of the search. It did
not consider any value to finding a related false target that might be a piece of debris from
the aircraft. However, in an actual search, often the most difficult task is to find the site of
the wreckage itself. Any follow-on investigation of the wreckage site will take time but be
certain to produce results, and will be fully resourced as needed. Therefore, another search
objective could be to identify one or more related false targets as sufficient to locate the
crash site for further recovery efforts.

6.3 Further Study
The heuristic of Section 3.5.2 can be better studied and improved. We are not able to
make recommendations on blending of prior information with the estimates developed
from search results, as we have not fully explored the region where accepting the estimates
and discarding the prior is preferred.

Often there may be two or more scenarios developed for the target location, and each could
have different characteristics that suggested different search optimization methods would
have the best performance. The heuristic in Equation (3.18) may protect against overfitting
in some possible scenarios, when the prior is in error and there is no detectable feature,
but prevent realization of the full potential of intensity estimates in others, when there is a
strong feature. An example could be if it is unknown whether an aircraft exploded in flight
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to create a debris field, or crash-landed intact and can be found intact on the sea floor. The
selection of a method then would be a decision problem for the searcher before beginning
operations.

This method assumes that the prior contains a 100% coverage of the target. That is, the
searcher is certain that the target is in this search region. That is not always realistic. Despite
this, the searcher can use this method as is, and the searcher will have to decide – based on
the probability of success this method can provide, and predictions of how long it might
take to improve that success – when to stop searching and switch to another region. See [8]
Section 2.4 for a discussion of defective distributions.

Alternately, this could be seen as an incomplete prior distribution. This method could be
used with a prior that is a larger search region containing two or more modes of probability,
each representing a scenario, all appropriately normalized based on prior beliefs to sum to
100% total probability.

There is room for more simulation experimentation and improvement. More simulation
results would help better understand the applicability of this model and its robustness to
a variety of possible scenarios – when it is better than other methods, and when it breaks
down and fails to improve results.

There may be an opportunity for a “learning” information-based search algorithm that can
plan ahead to search regions that it has not yet searched in order to confirm or deny the
presence of false targets. This would allow it to seek out more information to improve its
estimates before spending time on contact investigation - which could be very expensive.
This could lead towards an optimal adaptive search plan.

Finally, we did not include real-world data, but it would be informative to study real-world
searches using this method.
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APPENDIX A:
Bootstrapped Estimates of Uncertainty

A.1 Problem Statement
In this appendix, we use the bootstrap to estimate uncertainty in the values of λ(x) through
the parameters defining the intensity function. We compare several different non-parametric
and parametric bootstrap methods using different types of intervals. Finally, we attempt to
estimate the uncertainty in the intensity λ(x) directly without resort to the bootstrap, to see
if we can save a significant amount of computation time.

A.1.1 Contact Intensity Function
We expect the intensity of search contacts λ(x) to be an elliptical feature on top of a constant
background level. We model it with the following equation:

ξ (x) =
(

(x1 − C1) cos α + (x2 − C2) sin α
η1

)2β
+

(
(x1 − C1) sin α − (x2 − C2) cos α

η2

)2β

λ(x) = B +
κ∑

j=1
De−ξ (x) (A.1)

where

C1 = x1 coordinate of center of ellipse

C1 = x2 coordinate of center of ellipse

η1 = length of ellipse

η2 = width of ellipse

B = background density that is constant over the entire region
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D = peak intensity of ellipse - additive with background intensity

α = angle of rotation of the ellipse

β = steepness of edges of ellipse feature. We fix β = 1 in this study.

θ = (C1,C2, η1, η2, B, D, A)T

We consider a square search region A defined over x1 ∈ [−5, 5], x2 ∈ [−5, 5].

A.1.2 Estimate of Intensity
We use the MLE intensity estimates from Chapter 2 in this Appendix. For this study, we use
one source distribution: X ∼ Pois(λ(x, θSRC)), where θSRC = (C1 = 2.0,C2 = −2.0, η1 =

2.5, η2 = 1.25, B = 0.1, D = 3.5, A = 1.0, β = 1.0)). This source distribution is plotted in
Figure 2.4.

As noted in Chapter 2, the optimization does not provide any measure of uncertainty in
this θ. An estimate of the uncertainty is important, for example, in attempting to optimize
allocation of search effort to identify a given target.

Our estimate of uncertainty has two sources of error - one from the estimate itself, and one
of sampling error from the (single) observation of the source distribution we have to work
with.

We can sample from this distribution 1000 times, and calculate the MLE optimal θ̂ for each.
We plot the results in histograms in Figure A.1, including the resulting log-likelihood as
well. We can see that there may be some bias in our estimator for some of the parameters;
in particular it has difficulty capturing the correct dimensions of the ellipse η1 and η2, and
the rotation angle of the ellipse A. These are not independent biases but result from the
structure of our intensity function and θSRC.

We can see the samples mostly have error that appears normal. However, this is error we
cannot reduce or eliminate by choice of an estimation method - it is a lower bound on the
error in our estimation.
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A.2 Approaches
The literature contains some discussion of bootstrapping to estimate the intensity of a non-
homogeneous spatial process. Snethlage evaluates bootstrapping a spatial Poisson process
to determine statistics describing the point process [20]. Section 2 of [20] discusses a
traditional bootstrap of the data points observed. One drawback pointed out is that the
resulting bootstrap samples - n points sampled with replacement from the n observed
data points - will have some points repeated multiple times, which is not the case in the
original data and could lead to differences in behavior of the estimator. Section 3 of [20]
discusses another bootstrap sampling method, using n∗ ∼ Poisson(n) points. In Section
3, [20] recommends use of confidence regions for the Poisson parameter λ(x), rather than
bootstrapping. Patil and Kulkarni compare 19 alternate ways to generate such intervals for
the Poisson parameter, and recommend applicability in different situations [22]. Cowling et
al. use these two bootstrap sampling methods as well as a parametric method, with a kernel
estimator for the intensity λ(x) [23] .

Our comparative approach over three bootstrap sampling methods is similar to that in [23],
but over two dimensions for a spatial process rather than one-dimensional time series data
on coal mining accidents. See also Barker [24].

A.3 Methods for Estimating Uncertainty
We compare three ways of generating bootstrap samples, two types of bootstrap-derived
confidence intervals used to estimate uncertainty, and three confidence intervals for the
intensity that rely on simple calculations. Our goal is to find the best method to use for
estimates of uncertainty, that is the most accurate, useful, and computationally efficient.

A.3.1 Bootstrap Methods
We study the following three bootstrap sampling methods:

1. Constant-n. This is a non-parametric bootstrap with a constant number of points. Our
bootstrap samples are exactly n points chosen from X, where X = {x1, x2, . . . , xn)}.

2. Poisson-n. This is a non-parametric bootstrap with a Poisson number of points. We
sample with replacement n ∼ Pois(n) points from X.
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3. Parametric. We draw a sample of points from the non-homogeneous spatial Poisson
process defined by the estimated intensity function λ(x, θ̂) as its intensity function.

We use the following two bootstrap intervals to quantify the uncertainty in the Poisson
intensity over space:

1. Standard error estimate. [25] Chapter 6 discusses use of the bootstrap and the as-
sumption of normality to calculate the standard error of an estimator. The authors
suggest that B = 50 is typically enough bootstrap samples to calculate the bootstrap
standard error:

100(1 − α)%CI =
(
θ̂ + Zα1 ŝeB, θ̂ + Zα2 ŝeB

)
, (A.2)

where

Zα = normal critical value

α1 = (1 − α)/2; lower bound of interval for confidence level α

α2 = 1 − (1 − α)/2; upper bound of interval for confidence level α

θ̂ = Estimate of θ from data observation

ŝeB = Bootstrap standard error

= sd(θ̂∗).

2. Bootstrap percent interval. [25] Chapter 13 discusses an alternative, bootstrap per-
centile intervals. These do not rely on an assumption of normality but require many
more bootstrap samples. After [25], we use B = 1000 bootstrap samples. Although
we have more computing power available, solving a non-convex optimization prob-
lem for each bootstrap limits our appetite for larger sample sizes, and would be (even
more) impractical for applied use. From [25](13.3), the bootstrap percentile interval
is

100(1 − α)%CI =
(
θ̂ (α)

B , θ̂ (1−α)
B

)
(A.3)

where

θ̂ (α) = the (100 · α)th empirical percentile of θ̂
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We do not experiment with Approximate Bootstrap Confidence (ABC) or Bias-Corrected
and Accelerated (BCA) interval methods, or other intervals from [23].

A.3.2 Non-bootstrap methods
Non-bootstrap methods generate confidence intervals for λ(x) based only on the value of
λ(x) itself. Thus, they rely on only a single solve of the MLE optimization problem of
Equation (2.2) to find the optimal value of λ(x) suggested by the data X . Compared to
bootstrap methods, which require B solves of the MLE (2.2), this is much faster to compute,
as recommended by [20].

Confidence interval for intensity λ(x) methods:

1. Modified Wald interval λ. Instead of a bootstrap, we use the bounds on λ(x) given
by the modified Wald interval. Patil and Kulkarni recommend the Modified Wald
interval for low anticipated values of the Poisson mean, such as we expect in our
search [22]. We use the following, using 0 as a floor in place of any negative values:

100(1 − α)%CI =
(
λ(x) + Zα1

√
λ(x), λ(x) + Zα2

√
λ(x)

)
. (A.4)

2. Standard Poisson interval. This is given by finding the nearest integer value for the
5th and 95th percentiles using the inverse quantile function in R: qpois(c(0.05,
0.95), lambda). Patil and Kulkarni observe that the Confidence Interval (CI) with
endpoints rounded (outwards) to the nearest integer performed much better in term
of accuracy with a minimal increase in length [22].

3. Exact Poisson interval. This is given by the formula for the exact Poisson interval
fromGarwood [26] and as listed in [22]. It is shown to always have at least the desired
level of accuracy, but at some cost in increased width.

100(1 − α)%CI = *
,

χ2
2λ(x),α1

2
,
χ2

2(λ(x)+1),α2

2
+
-
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A.3.3 Comparison
We evaluate the in terms of accuracy - whether the 100(1 − α)% (here, 90%) intervals
they provide actually cover 90% of the error; and efficiency, by the size or width of the
90% interval. We evaluate the three bootstrap sampling methods, using both bootstrap
confidence intervals, a total of six methods.

We also compare the size of the confidence intervals for λ̂(x). We can use the three non-
bootstrap methods, and also the six bootstrap methods - calculating λ̂ = λ(x, θ̂B) for each.
We do this over a grid of points covering the entire search region.

Finally, we consider the computational efficiency of each method, in terms of how many
bootstrap replications they require. Applications of search optimization include austere
underwater environments where power, computer resources, and time are often limited,
and optimization routines will need to use many estimates of the contact intensity and its
uncertainty, so this is an equally important consideration.

A.4 Results
We use a single actual value of θSRC as a source distribution we draw samples from,
λ(x) = λ(x, θSRC). For each simulated observation, we draw one sample X and build
confidence intervals using each of our sampling and interval methods, with up to 1000
bootstrap replications. We simulate 500 observations. We plot the first 50 ellipses - as
proxies for θ̂B - in Figure A.2.

A.4.1 Parameter Values
Figure A.3 shows our results for values of θ̂. We can see that Constant-n sampling (a) is
quite different from Poisson-n (b) and Parametric (c) sampling and gives markedly different
results. Poisson-n and Parametric sampling appear almost equivalent, with the blue and
green matching each other very closely both in Figure A.2 and in Figure A.3. The green
and blue give tighter groups. However, the red - fixed N bootstrap - seems to better capture
the source distribution, and its estimates fall better within the bounds of the observed
distribution - the black lines in Figure A.3.

Of note, the Poisson-n and Parametric bootstrap sampling methods are quite inaccurate at
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estimating the location of the intensity feature (ellipse) - that is, values of C1 and C2. Both
are pulling to the center of the search area, towards the origin at (0, 0). Bootstrap samples of
a fixed number of points do not seem to have this bias - the red points are nicely centered on
the actual values of C1 and C2 in the panel (a) of Figure A.3. The Poisson-n and Parametric
methods have the advantage of tighter groups for the other parameters.

A.4.2 Accuracy of Confidence Intervals
We next simulate a large number of samples to evaluate the coverage of the confidence
intervals for θ given by each method. We ran 500 simulations of observations drawn from
the source distribution, of 1000 bootstrap samples for each sampling method, for percentile
intervals. We ran 1000 simulations with 50 bootstrap samples for standard error intervals.
Accuracy for the bootstrap methods is plotted in Figure A.4, compared to the parameters
used in the source distribution. We also plot the accuracy of estimates for the intensity of the
spatial NHPP over space in Figure A.5, compared to the intensity of the source distribution.

In these results, we see that the Constant-n bootstrap sampling seem to outperform the other
two sampling techniques. The red bars achieve 90% accuracy over almost all parameters
in θ. In contrast, the Poisson-n and Parametric sampled estimates fail to come close to the
prescribed 90% almost half of the time.

Further, we can see that the standard error intervals are more accurate than the percentage
intervals, in particular for Poisson and parametric sampling. As these plots are made with
only 50 bootstrap samples - as recommended for standard error intervals, and well below
recommendations for percentage intervals - this is not surprising. Further, we have seen in
Figure A.1, our data is very close to normally distributed.

Plotted over space, we can see similar trends. Constant-n sampling outperforms other
methods in accuracy, and standard error intervals outperform percentage. All models do
well over the background noise along the left and top of the region; those sampling with
random n have the most trouble in the center. This reflects how those methods tend to “pull”
C1 and C2 towards the center of the region in Figures (A.2) and (A.3).

Also on Figure A.5, in the third row, we see the accuracy plotted for the Poisson intervals
that do not use bootstrap sampling. In general these have much higher average accuracy.
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Although constructed at the 90% confidence level, the modified Wald and exact intervals
exceed 99% accuracy. However, the “standard” Poisson interval - the integer bounds above
and below - performs very close to the 90% level.

A.4.3 Size of Confidence Intervals
We now can judge not just how accurate, but how useful these intervals are. The smaller
the interval, the better. We plot the length of confidence intervals in Figure A.6 and over
space in Figure A.7.

We can see that in general, the bootstrap confidence intervals are the smallest, with no
clear advantage from the percentile intervals using 1000 bootstrap samples. The standard
error intervals are slightly wider than the percentile intervals, but not significantly so for
most applications. The standard (nearest-integer) intervals are in fact both longer and less
accurate on average than the modified Wald intervals. The modified Wald and standard
Poisson intervals are two times wider - and the exact Poisson interval was five times wider
- than the bootstrap intervals. This is the cost of not performing any bootstrap sampling.

A.5 Implications
Based on these results, we can recommend the following:

1. Bootstrapping can help understand uncertainty in estimates, but it is not the only
method. It is computationally intensive, although parallel processing can reduce the
time required significantly if computing resources are available.

2. 50 bootstrap samples are sufficient for this problem, where the parameters have a
normal distribution. The Standard Error intervals take advantage of this, and perform
better, with fewer bootstraps required, than the percentile intervals.

3. Bootstrap intervals can achieve advertised accuracy. Bootstrap samples are best made
non-parametrically using the same number of points that was observed to reduce bias
(Constant-n). The other sampling methods, using a random number of points n,
underperform significantly.

4. Without bootstrap, it is possible to generate very accurate intervals for intensity value
at any given point. The Modified Wald intervals exceed the desired accuracy and are
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the most efficient, or smallest, of the non-bootstrap intervals. Although twice as large
as a bootstrap interval, it is more accurate and much faster to generate.

5. Further study of more distributions, with different values of θSRC would be helpful
in understanding the limitations of both bootstrap and CI estimation techniques. One
area for particular study is changing relative intensity of the feature and background
noise, that is D and B, to see how that affects the MLE estimation algorithm and
estimates of uncertainty. This would be a computationally intensive study.

6. Further study of a binomial sample from a single point pattern, rather than generating
new point patterns from a distribution, would be of interest. Actual search results are
sampled binomially from a single, fixed set of objects on the sea floor, which are either
detected or not detected by a sensor. Any given search will either detect, or not detect,
each object. This problem setup - instead of sampling from a continuous distribution
of all possible debris patterns - also could affect future results in applications.
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Figure A.1. Maximum Likelihood Estimates of Parameters
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Bootstrap ellipses of θ̂ plotted for three methods of bootstrap, B = 50. All share
a single observed set of points X. Purple ellipse shows actual parameters of source
distribution θSRC.

Figure A.2. Ellipses for Three Bootstrap Methods
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(a) Constant-n Sampling, B=50
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(b) Constant-n Sampling, B=1000
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(c) Poisson-n Sampling, B=50
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Poisson−n: Mean estimated theta for B=1000 over 500 simulations

(d) Poisson-n Sampling, B=1000

Estimated parameter values θ̂ for three bootstrap sampling methods, over 500
and 1000 simulated sets of points X . Black lines are sample mean and quantiles
estimated directly from 1000 simulations of X (see Figure A.1). Purple diamonds
bracket the actual values from the source distribution θSRC.

Figure A.3. Bootstrap Estimated Parameter Values
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(e) Parametric Sampling, B=50
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(f) Parametric Sampling, B=1000

Figure A.3. Bootstrap Estimated Parameter Values (continued)
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These plots show that the Constant-n sampling method (in red) is best able to
meet expected accuracy of 90% for all estimated parameters, using either interval
method. Non-bootstrap methods do not permit estimation of parameters θ̂.

Figure A.4. Accuracy of Confidence Intervals
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These plots show the realized accuracy of the respective 90% CIs evaluated on a
50x50 grid over the search region R. Red color represents (desirable) high accuracy;
blue colors represent low accuracy. The plots show that the Constant-n bootstrap
sampling method has the best spatial performance of bootstrap methods, but all
non-bootstrap methods outperform it.

Figure A.5. Accuracy of Confidence Intervals over R
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These histograms show the size of confidence intervals for each method. B and
simulations as in Figure A.5. We can see that the bootstrap methods develop
much tighter CIs than non-bootstrap methods, which is desirable.

Figure A.6. Width of Confidence Intervals
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These plots show the size of the confidence interval evaluated on a 25x25 grid.
Blue color represents (desirable) small, efficient intervals; red represents wide in-
tervals. Again bootstrap methods have the tightest intervals, with Constant-n
outperforming the other sampling methods.

Figure A.7. Width of Confidence Intervals over R
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APPENDIX B:
Optimal Search

B.1 Optimal Search
In this appendix, we include an algorithm for optimal search without false targets over
continuous space, with continuous application of search effort, (2.71) and (2.72) from [8].
This formulation assumes an input probability distribution function for the target fpri(x)
which does not change over time as the search progresses. We have updated the notation
from the reference in an attempt at consistency and to minimize confusion. We first define
the following terms:

R: continuous search region in 2-dimensional space
x: a location in R; x = (x1, x2)T

m(x): a broad area search plan, as a function allocating search effort for any location x

b(x, z): probability of detecting the target if it is at x given the applied broad search effort z

z: density of broad area search effort applied at a location
M: upper bound on the search effort that can be applied
ρ(x, z): rate of return function. Note this differs from ρ as defined in Section 2.3.
K : Total cost of the search plan (i.e. total search time)
fpri(x): prior PDF for target location
c(x) > 0: cost to apply search effort; here we use time
λ: the optimal rate of return of search effort and Lagrange multiplier.4

We then can calculate the following values to find the optimal allocation of broad area
search effort mλ:

ρ(x, z) =
b′(x, z) fpri(x)

c(x)
for z ≥ 0 and x ∈ S (B.1)

ρ−1
M (x, λ) = min{M, ρ−1(x, λ)} (B.2)

4Note this differs from λ as used in 2.3 for NHPP intensity; we re-use it in this section as it is the standard
notation for both NHPP intensity and Lagrange multipliers, and used in [8].
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K (λ) =
∫
R

c(x)ρ−1
M (x, λ) dx for λ > 0 (B.3)

λ = K−1(K ) (B.4)

mλ (x) = ρ−1
M (x, λ) for x ∈ R (B.5)

Here mλ (x) is the optimal search plan, or allocation of broad search effort, for the total time
(cost) K . This formulation uses Lagrange multipliers to find the optimal plan. λ can be
found for any value of K by a one-dimension linear search, which is straightforward using
numerical methods on a computer [8].
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APPENDIX C:
Data Table

Table C.1. Simulation Data
Total Time # Sorties ID Times1 Background Feature OSAP-E2 OSAP-ICCI2 OSAP-ICCI-E2 OSAP2 OSAP-E-AE2

50 1 a12A16 0.1 4 0.11 (0.022) - - 0.11 (0.022) 0.13 (0.024)
50 16 a12A16 0.1 4 0.18 (0.027) - - 0.18 (0.027) 0.33 (0.033)
100 1 a12A16 0.1 4 0.23 (0.029) - - 0.28 (0.031) 0.26 (0.031)
100 16 a12A16 0.1 4 0.41 (0.034) - - 0.40 (0.034) 0.57 (0.034)
150 1 a12A16 0.1 4 0.40 (0.034) - - 0.40 (0.034) 0.39 (0.034)
150 16 a12A16 0.1 4 0.65 (0.033) - - 0.54 (0.035) 0.68 (0.032)
200 1 a12A16 0.05 0.5 0.71 (0.063) 0.86 (0.049) - 0.75 (0.061) 0.70 (0.064)
200 1 a12A16 0.05 4 0.56 (0.056) - - 0.55 (0.057) -
200 1 a12A16 0.05 8 0.34 (0.066) 0.52 (0.070) - 0.29 (0.063) 0.29 (0.063)
200 1 a12A16 0.1 0.5 0.77 (0.027) - - 0.76 (0.028) -
200 1 a12A16 0.1 2 0.61 (0.032) - - 0.61 (0.032) -
200 1 a12A16 0.1 4 0.51 (0.018) 0.65 (0.030) 0.64 (0.030) 0.52 (0.018) 0.52 (0.035)
200 1 a12A16 0.1 6 0.39 (0.032) - - 0.39 (0.032) -
200 1 a12A16 0.1 8 0.38 (0.032) - - 0.35 (0.031) -
200 1 a12A16 0.15 4 0.56 (0.056) - - 0.56 (0.057) -
200 1 a12A16 0.2 0.5 0.54 (0.070) 0.60 (0.068) - 0.57 (0.069) 0.57 (0.069)
200 1 a12A16 0.2 4 0.54 (0.057) - - 0.54 (0.057) -
200 1 a12A16 0.2 8 0.32 (0.065) 0.40 (0.069) - 0.34 (0.066) 0.32 (0.065)
200 1 a24A32 0.1 4 0.32 (0.046) 0.44 (0.049) 0.44 (0.049) 0.36 (0.047) -
200 1 a36A48 0.1 4 0.25 (0.042) 0.27 (0.044) 0.26 (0.043) 0.23 (0.042) -
200 1 a3A4 0.1 4 0.71 (0.045) 0.86 (0.034) 0.86 (0.034) 0.74 (0.043) -
200 1 a6A8 0.1 4 0.64 (0.047) 0.78 (0.041) 0.81 (0.039) 0.65 (0.047) -
200 2 a12A16 0.1 4 0.64 (0.040) 0.69 (0.039) 0.68 (0.039) 0.59 (0.041) -
200 4 a12A16 0.1 4 0.74 (0.036) 0.66 (0.040) 0.66 (0.039) 0.66 (0.039) -
200 8 a12A16 0.1 4 0.81 (0.033) 0.62 (0.041) 0.64 (0.040) 0.74 (0.037) -
200 16 a12A16 0.05 0.5 0.88 (0.045) - - 0.86 (0.049) 0.83 (0.053)
200 16 a12A16 0.05 4 0.86 (0.040) - - 0.74 (0.050) -
200 16 a12A16 0.05 8 0.70 (0.064) - - 0.39 (0.068) 0.74 (0.061)
200 16 a12A16 0.1 0.5 0.81 (0.026) - - 0.83 (0.025) -
200 16 a12A16 0.1 2 0.83 (0.025) - - 0.76 (0.028) -
200 16 a12A16 0.1 4 0.80 (0.015) 0.65 (0.040) 0.65 (0.030) 0.68 (0.017) 0.75 (0.030)
200 16 a12A16 0.1 6 0.70 (0.030) - - 0.61 (0.032) -
200 16 a12A16 0.1 8 0.62 (0.032) - - 0.55 (0.033) -
200 16 a12A16 0.15 4 0.89 (0.036) - - 0.85 (0.041) -
200 16 a12A16 0.2 0.5 0.62 (0.068) - - 0.56 (0.069) 0.54 (0.070)
200 16 a12A16 0.2 4 0.80 (0.046) - - 0.75 (0.049) -
200 16 a12A16 0.2 8 0.64 (0.067) - - 0.40 (0.069) 0.83 (0.052)
200 16 a24A32 0.1 4 0.53 (0.049) - 0.36 (0.048) 0.45 (0.049) -
200 16 a36A48 0.1 4 0.40 (0.048) - 0.27 (0.044) 0.37 (0.048) -
200 16 a3A4 0.1 4 0.95 (0.022) - 0.93 (0.025) 0.84 (0.036) -
200 16 a6A8 0.1 4 0.90 (0.029) - 0.89 (0.031) 0.80 (0.040) -
200 24 a12A16 0.1 4 0.93 (0.022) 0.64 (0.040) 0.67 (0.039) 0.81 (0.033) -
200 32 a12A16 0.1 4 0.93 (0.021) 0.67 (0.039) 0.69 (0.039) 0.81 (0.033) -
250 1 a12A16 0.1 4 0.63 (0.034) - - 0.61 (0.034) 0.61 (0.034)
250 16 a12A16 0.1 4 0.86 (0.024) - - 0.74 (0.030) 0.84 (0.025)

In all cases we used b(x, z) = B(x, z) = 1 − exp (−z), andU = Λ = 1.
1 “a12” means a(w) = 1 − exp(−w/12). “A16” means A(w) = 1 − exp(−w/16), etc.
2Data is given as mean percentage of successful searches, with half-width of 95% confidence interval in (). Empty field
means that combination of input factor was not simulated.
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